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Foreword

As the data science domain and educational landscape continues to evolve, there is an increasing need to train individuals to critically consider data both holistically and logically. Each year, given the advancement in computational power, magnitude of data, and data-informed decisions to make, more and more individuals are dipping their toes in the water of data science – and most are not aware of how messy their datasets are. Working with messy data is challenging, confusing, and not necessarily exciting, especially for newcomers. To continue to use data for informed decision-making, it is important to introduce concepts in data logic, planning, and purpose early in the stages of training best practices. The how, why, and lessons learned of teaching data science represent huge areas of exploration given the exponential increase in learners. There are numerous resources, MOOCs, Twitter threads, packages, cheat-sheets, and more out there for individuals to learn data science, either on their own or in a class. However, what is effective and what pathways are best for certain learner personas? Moreover, how does someone new to the field choose which educational resources mesh with their needs and background familiarity?

While spending many years as an educator for RStudio and The Carpentries, Dr. Daniel Chen recognized this need, and it has become his passion to introduce learners to core concepts to work with their data in more effective, reproducible, and reliable methods in an environment matching their comfort level with the field. I met Dan by semi-random chance and after a few conversations, we were well on our way with a dissertation topic stemming from these interests. With a shared passion in educating others in foundational data science methods and looking into those “hows” and “whys” of the ways in which we were teaching, we sought to understand our learners first and then create materials. It was a pleasure to work with Dan on his dissertation—and to see those insights incorporated here in Pandas for Everyone, Second Edition.

In the second edition, Dan takes learners step-by-step through practical scratch code examples for using Pandas. Using Pandas helps demystify Python data analysis, create organized manageable datasets, and most importantly, have tidy datasets! It takes a special educator to get individuals (myself included!) excited about cleaning data, but that is what Dan does for his learners in Pandas for Everyone. Visualizing and modeling data are taught in easy-to-interpret style once learners become comfortable with manipulating and transforming their datasets, all of which is covered in sequential order. It is this mindset and presentation of materials that really makes this book for everyone—and aids the learner in best practices while working with example datasets that mimic datasets they might use in real life. Pandas for Everyone, Second Edition, is a quick but detailed foray for new data scientists, instructors, and more to experience best practices and the massive potential of Pandas in a clear-cut format.

–Anne M. Brown, PhD (she/her)

–Assistant Professor

–Data Services—University Libraries

–Department of Biochemistry

–Virginia Tech, Blacksburg, VA 24061



Foreword

With each passing year data becomes more important to the world, as does the ability to compute on this growing abundance of data. When deciding how to interact with data, most people make a decision between R and Python. This does not reflect a language war, but rather a luxury of choice where data scientists and engineers can work in the language with which they feel most comfortable. These tools make it possible for everyone to work with data for machine learning and statistical analysis. That is why I am happy to see what I started with R for Everyone extended to Python with Pandas for Everyone.

I first met Dan Chen when he stumbled into the “Introduction to Data Science” course while working toward a master’s in public health at Columbia University’s Mailman School of Public Health. He was part of a cohort of MPH students who cross-registered into the graduate school course and quickly developed a knack for data science, embracing statistical learning and reproducibility. By the end of the semester he was devoted to, and evangelizing, the merits of data science.

This coincided with the rise of Pandas, improving Python’s use as a tool for data science and enabling engineers already familiar with the language to use it for data science as well. This fortuitous timing meant Dan developed into a true multilingual data scientist, mastering both R and Pandas. This puts him in a great position to reach different audiences, as shown by his frequent and popular talks at both R and Python conferences and meetups. His enthusiasm and knowledge shine through and resonate in everything he does, from educating new users to building Python libraries. Along the way he fully embraces the ethos of the open-source movement.

As the name implies, this book is meant for everyone who wants to use Python for data science, whether they are veteran Python users, experienced programmers, statisticians, or entirely new to the field. For people brand new to Python the book contains a collection of appendixes for getting started with the language and for installing both Python and Pandas, and it covers the whole analysis pipeline, including reading data, visualization, data manipulation, modeling, and machine learning.

Pandas for Everyone is a tour of data science through the lens of Python, and Dan Chen is perfectly suited to guide that tour. His mixture of academic and industry experience lends valuable insights into the analytics process and how Pandas should be used to greatest effect. All this combines to make for an enjoyable and informative read for everyone.

–Jared Lander, series editor



Preface

My foray into teaching was in 2013 when I attended my first Software-Carpentry workshop, and I’ve been involved in teaching ever since. In 2019, I was lucky enough to be one of the RStudio (now Posit, PBC) interns with the education group. By then, data science education has already gained a tremendous amount of momentum. When I finished my internship, I needed a dissertation topic for my degree, and wanted to combine teaching with medicine. Luckily, I knew a librarian at the university, Andi Ogier, who connected me with Anne Brown, who was also interested in teaching data literacy skills in the health sciences. The rest, is history. Anne became my PhD chair, and with the rest of my committee, Dave Higdon, Alex Hanlon, and Nikki Lewis, I got to do research on data science education in the medical and biomedical sciences.1 The first edition of the book became a foundation for what data science topics were taught for the workshop component of the dissertation. The second edition of Pandas for Everyone incorporates many of the things I’ve learned while studying education and pedagogy.

1. You can learn more about my dissertation around data science education here: https://github.com/chendaniely/dissertation

Long story short, befriend a librarian. Their profession revolves around data.

In 2013, I didn’t even know the term “data science” existed. I was a master’s of public health (MPH) student in epidemiology at the time and was already captivated with the statistical methods beyond the t-test, ANOVA, and linear regression from my psychology and neuroscience undergraduate background. It was also in the fall of 2013 that I attended my first Software-Carpentry workshop and that I taught my first recitation section as a teaching assistant for my MPH program’s Quantitative Methods course (essentially a combination of a first-semester epidemiology and biostatistics course). I’ve been learning and teaching ever since.

I’ve come a long way since taking my first Introduction to Data Science course, which was taught by Rachel Schutt, PhD; Kayur Patel, PhD; and Jared Lander. They opened my eyes to what was possible. Things that were inconceivable (to me) were actually common practices, and anything I could think of was possible (although I now know that “possible” doesn’t mean “performs well”). The technical details of data science—the coding aspects— were taught by Jared in R. Jared’s friends and colleagues know how much of an aficionado he is of the R language.

At the time, I had been meaning to learn R, but the Python/R language war never breached my consciousness. On the one hand, I saw Python as just a programming language; on the other hand, I had no idea Python had an analytics stack (I’ve come a long way since then). When I learned about the SciPy stack and Pandas, I saw it as a bridge between what I knew how to do in Python from my undergraduate and high school days and what I had learned in my epidemiology studies and through my newly acquired data science knowledge. As I became more proficient in R, I saw the similarities to Python. I also realized that a lot of the data cleaning tasks (and programming in general) involve thinking about how to get what you need— the rest is more or less syntax. It’s important to try to imagine what the steps are and not get bogged down by the programming details. I’ve always been comfortable bouncing around the languages and never gave too much thought to which language was “better”. Having said that, this book is geared toward a newcomer to the Python data analytics world.

This book encapsulates all the people I’ve met, events I’ve attended, and skills I’ve learned over the past few years. One of the more important things I’ve learned (outside of knowing what things are called so Google can take me to the relevant StackOverflow page) is that reading the documentation is essential. As someone who has worked on collaborative lessons and written Python and R libraries, I can assure you that a lot of time and effort go into writing documentation. That’s why I constantly refer to the relevant documentation page throughout this book. Some functions have so many parameters used for varying use cases that it’s impractical to go through each of them. If that were the focus of this book, it might as well be titled Loading Data Into Python. But, as you practice working with data and become more comfortable with the various data structures, you’ll eventually be able to make educated guesses about what the output of something will be, even though you’ve never written that particular line of code before. I hope this book gives you a solid foundation to explore on your own and be a self-guided learner.

I met a lot of people and learned a lot from them during the time I was putting this book together. A lot of the things I learned dealt with best practices, writing vectorized statements instead of loops, formally testing code, organizing project folder structures, and so on. I also learned lot about teaching from actually teaching. Teaching really is the best way to learn material. Many of the things I’ve learned in the past few years have come to me when I was trying to figure them out to teach others. Once you have a basic foundation of knowledge, learning the next bit of information is relatively easy. Repeat the process enough times, and you’ll be surprised how much you actually know. That includes knowing the terms to use for Google and interpreting the StackOverflow answers. The very best of us all search for our questions. Whether this is your first language or your fourth, I hope this book gives you a solid foundation to build upon and learn as well as a bridge to other analytics languages.

Breakdown of the Book

This book is organized into multiple parts plus a set of appendixes. The overall structure is mainly unchanged from the first edition. Each part of the book has a blurb that introduces the theme and how the chapters in that part relate to the data science process.

How to Read This Book

Whether you are a newcomer to Python or a fluent Python programmer, this book is meant to be read from the beginning. Educators, or people who plan to use the book for teaching, may also find the order of the chapters to be suitable for a workshop or class.

Newcomers

Absolute newcomers are encouraged to first look through Appendix A - Appendix J as they explain how to install Python and get it working. After taking these steps, readers will be ready to jump into the main body of the book. The earlier chapters make references to the relevant appendixes as needed. The concept maps and learning objectives found at the beginning of the earlier chapters help organize and prepare the reader for what will be covered in the chapter, as well as point to the relevant appendixes to be read before continuing.

Fluent Python Programmers

Fluent Python programmers may find the first two chapters to be sufficient to get started and grasp the syntax of Pandas; they can then use the rest of the book as a reference. The objectives at the beginning of the earlier chapters point out which topics are covered in the chapter. The chapter on “tidy data” in Part I, and the chapters in Part III, will be particularly helpful in data manipulation.

Instructors

Instructors who want to use the book as a teaching reference may teach each chapter in the order presented. It should take approximately 45 minutes to 1 hour to teach each chapter. I have sought to structure the book so that chapters do not reference future chapters, so as to minimize the cognitive overload for students— but feel free to shuffle the chapters as needed.

The concept maps and learning objectives provided in the earlier chapters should help contextualize how concepts are related to one another.

Setup

Everyone will have a different setup, so the best way to get the most updated set of instructions on setting up an environment to code through the book would be on the accompanying GitHub repository:

https://github.com/chendaniely/pandas_for_everyone

Otherwise, see Appendix B for information on how to install Python on your computer.

Get the Data

The easiest way to get all the data to code along the book is to download the ZIP file of the book’s repository here:

https://github.com/chendaniely/pandas_for_everyone

The book’s repository will have the latest instructors on how to download the book’s data, and more detailed instructors for how to get the book can be found in Appendix B.3.

Setup Python

Appendix G and Appendix H cover environments and installing packages, respectively. There you will find the URLs and commands on how to setup Python to code along the book. Again, the book’s repository will always contain the latest set of instructions.

Feedback, Please!

Thank you for taking the time to go through this book. If you find any problems, issues, or mistakes within the book, please send me feedback! GitHub issues may be the best place to provide this information, but you can also email me at chendaniely@gmail.com. Just be sure to use the PFE or P4E tag in the beginning of the subject line so I can make sure your emails do not get flooded by various listserv emails. If there are topics that you feel should be covered in the book, please let me know. I will try my best to put up a notebook in the GitHub repository, and to get it incorporated in a later printing or edition of the book.

Words of encouragement are appreciated.


Register your copy of Pandas for Everyone, Second Edition on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780137891153) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.
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Part I

Introduction

Chapter 1 Pandas DataFrame Basics

Chapter 2 Pandas Data Structures Basics

Chapter 3 Plotting Basics

Chapter 4 Tidy Data

Chapter 5 Apply Functions

This book begins with an introduction to the Pandas Python library for data analytics. It first covers the very basics of using the pandas library, loading your first data set and doing basic filtering and subsetting commands with your data (Chapter 1). It then goes into more detail about the DataFrame and Series objects, where we cover more of the attributes and methods these objects can do, including how to save data sets for storage (Chapter 2). It then pivots into data visualization with matplotlib and seaborn plotting libraries as well as the built-in pandas plotting methods (Chapter 3). Next, this part covers one of the fundamental concepts in data literacy, tidy data principles. Where it discusses what a “clean” and “tidy” data set looks like so you can process data with a goal and target in mind (Chapter 4). Finally, this part covers writing functions and applying them to your data, and lays down the foundation for any custom data processing steps in the future (Chapter 5).

Think of this part of the book as the core data literacy knowledge on how to work and think about your data. It also aims to teach you the relevant bits of the Python programming language by using the Pandas library as the motivational use case.



1

Pandas DataFrame Basics

1.1 Introduction

Pandas is an open-source Python library for data analysis. It gives Python the ability to work with spreadsheet-like data for fast data loading, manipulating, aligning, merging, etc. To give Python these enhanced features, Pandas introduces two new data types to Python: Series and DataFrame. The DataFrame will represent your entire spreadsheet or rectangular data, whereas the Series is a single column of the DataFrame. A Pandas DataFrame can also be thought of as a dictionary or collection of Series.

Why should you use a programming language like Python and a tool like Pandas to work with data? It boils down to automation and reproducibility. If there is a particular set of analyses that needs to be performed on multiple data sets, a programming language can automate the analysis on the data sets. Although many spreadsheet programs have their own macro programming languages, many users do not use them. Furthermore, not all spreadsheet programs are available on all operating systems. Performing data tasks using a programming language forces the user to have a running record of all steps performed on the data. I, like many people, have accidentally hit a key while viewing data in a spreadsheet program, only to find out that my results do not make any sense anymore due to bad data. This is not to say spreadsheet programs are bad or do not have their place in the data workflow. They do, but there are better and more reliable tools out there. These better tools can work in tandem with spreadsheet programs while providing more reliable data manipulation, and introduce the possibility of incorporating data from other data sets and databases.

Learning Objectives

The concept map for this chapter can be found in Figure A-1.

[image: Images] Use Pandas functions to load a simple delimited data file

[image: Images] Calculate how many rows and columns were loaded

[image: Images] Identify the type of data that were loaded

[image: Images] Name differences between functions, methods, and attributes

[image: Images] Use methods and attributes to subset rows and columns

[image: Images] Calculate basic grouped and aggregated statistics from data

[image: Images] Use methods and attributes to create a simple figure from data

1.2 Load Your First Data Set

When given a data set, we first load it and begin looking at its structure and contents. The simplest way of looking at a data set is to look at and subset specific rows and columns. We can see what type of information is stored in each column, and can start looking for patterns by aggregating descriptive statistics.

Since Pandas is not part of the Python standard library, we have to first tell Python to load (i.e., import) the library. If you have not installed data and packages needed to go through the book please see Appendix B.

import pandas

With the library loaded we can use the read_csv() function to load a CSV data file. In order to access the read_csv() function from pandas, we use something called “dot notation”. More on dot notations can be found in Appendix L, Appendix P, and Appendix E. We write pandas.read_csv() to say: within the pandas library we just loaded, look inside for the read_csv() function.


About the Gapminder Data Set

The Gapminder data set originally comes from https://www.gapminder.org/. This particular version of the book is using Gapminder data prepared by Jennifer Bryan from the University of British Columbia (now at Posit, PBC, formerly RStudio, PBC). The repository can be found at https://github.com/jennybc/gapminder/.



# by default read_csv() will read a comma separated file,
# our gapminder data set is separated by a tab
# we can use the sep parameter and indicate a tab with \t
df  = pandas.read_csv('./data/gapminder.tsv', sep='\t')
# print out the data
print(df)

           country continent  year  lifeExp        pop      gdpPercap
0      Afghanistan      Asia  1952   28.801    8425333     779.445314
1      Afghanistan      Asia  1957   30.332    9240934     820.853030
2      Afghanistan      Asia  1962   31.997   10267083     853.100710
3      Afghanistan      Asia  1967   34.020   11537966     836.197138
4      Afghanistan      Asia  1972   36.088   13079460     739.981106
...            ...       ...   ...      ...        ...            ...
1699      Zimbabwe    Africa  1987   62.351    9216418     706.157306
1700      Zimbabwe    Africa  1992   60.377   10704340     693.420786
1701      Zimbabwe    Africa  1997   46.809   11404948     792.449960
1702      Zimbabwe    Africa  2002   39.989   11926563     672.038623
1703      Zimbabwe    Africa  2007   43.487   12311143     469.709298

[1704 rows x 6 columns]

Since we will be using Pandas functions many times throughout the book as well as in your own programming. It is common to give pandas the alias pd. The above code will be the same as below:

import pandas as pd
df = pd.read_csv('./data/gapminder.tsv', sep='\t')

We can check to see if we are working with a Pandas Dataframe by using the built-in type() function (i.e., it comes directly from Python, not a separate library such as Pandas).

print(type(df))

<class 'pandas.core.frame.DataFrame'>

The type() function is handy when you begin working with many different types of Python objects and need to know what object you are currently working on.

The data set we loaded is currently saved as a Pandas DataFrame object

(pandas.core.frame.DataFrame) and is relatively small. Every DataFrame object has a .shape attribute that will give us the number of rows and columns of the DataFrame.

# get the number of rows and columns
print(df.shape)

(1704, 6)

The shape attribute returns a tuple (Appendix G) where the first value is the number of rows and the second value is the number of columns.

From the results above, we see our gapminder data set has 1704 rows and 6 columns. Since .shape is an attribute of the DataFrame object, and not a function or method of the DataFrame object, it does not have round parentheses after the period (i.e., it’s written as df.shape and not df.shape()). If you made the mistake of putting parentheses after the .shape attribute, it would return an error.

# shape is an attribute, not a method
# this will cause an error
print(df.shape())

TypeError: 'tuple' object is not callable

Typically, when first looking at a data set, we want to know how many rows and columns there are (we just did that). To get a gist of what information the data set contains, we look at the column names. The column names, like .shape, are given using the .column attribute of the DataFrame object.

# get column names
print(df.columns)

Index(['country', 'continent', 'year', 'lifeExp', 'pop',
       'gdpPercap'],
      dtype='object')


Question

What is the type of the column names?



The Pandas DataFrame object is similar to other languages that have DataFrame-like objects (e.g., Julia and R). Each column (i.e., Series) has to be the same type, whereas each row can contain mixed types. In our current example, we can expect the country column to be all strings, and the year to be integers. However, it’s best to make sure that is the case by using the .dtypes attribute or the .info() method. Table 1.1 shows what the type in Pandas is relative to native Python.

# get the dtype of each column
print(df.dtypes)

country        object
continent      object
year            int64
lifeExp      float64
pop             int64
gdpPercap    float64
dtype: object

# get more information about our data
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):
 #    Column     Non-Null Count  Dtype
---   ------     --------------  -----
 0    country    1704 non-null   object
 1    continent  1704 non-null   object
 2    year       1704 non-null   int64
 3    lifeExp    1704 non-null   float64
 4    pop        1704 non-null   int64
 5    gdpPercap  1704 non-null   float64
dtypes: float64(2), int64(2), object(2)
memory usage: 80.0+ KB
None

1.3 Look at Columns, Rows, and Cells

Now that we’re able to load up a simple data file, we want to be able to inspect its contents. We could print() out the contents of the DataFrame, but with today’s data, there are too many cells to make sense of all the printed information. Instead, the best way to look at our data is to inspect it by looking at various subsets of the data. We can use the .head() method of a DataFrame to look at the first 5 rows of our data.


Table 1.1 Table of Pandas dtypes and Python Types
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# show the first 5 observations
print(df.head())

       country continent  year  lifeExp       pop     gdpPercap
0  Afghanistan      Asia  1952   28.801   8425333    779.445314
1  Afghanistan      Asia  1957   30.332   9240934    820.853030
2  Afghanistan      Asia  1962   31.997  10267083    853.100710
3  Afghanistan      Asia  1967   34.020  11537966    836.197138
4  Afghanistan      Asia  1972   36.088  13079460    739.981106

This is useful to see if our data loaded properly, and to get a better sense of the columns and contents. However, there are going to be times when we only want particular rows, columns, or values from our data.

Before continuing, make sure you are familiar with Python containers (Appendix F, Appendix H).

1.3.1 Select and Subset Columns by Name

If we want only a specific column from our data, we can access the data using square brackets, [ ].

# just get the country column and save it to its own variable
country_df = df['country']

# show the first 5 observations
print(country_df.head())

0    Afghanistan
1    Afghanistan
2    Afghanistan
3    Afghanistan
4    Afghanistan
Name: country, dtype: object

# show the last 5 observations
print(country_df.tail())

1699    Zimbabwe
1700    Zimbabwe
1701    Zimbabwe
1702    Zimbabwe
1703    Zimbabwe
Name: country, dtype: object

In order to specify multiple columns by the column name, we need to pass in a Python list between the square brackets. This may look a bit strange since there will be 2 sets of square brackets, [[ ]].

The outer set of square brackets tells us that we are subsetting our DataFrame by columns. The inner set of square brackets tells us the list of columns we want to use. That is, Python also uses square brackets, [ ], to “list” multiple things as a single object.

# Looking at country, continent, and year
subset = df[['country', 'continent', 'year']]

print(subset)

          country continent  year
0     Afghanistan      Asia  1952
1     Afghanistan      Asia  1957
2     Afghanistan      Asia  1962
3     Afghanistan      Asia  1967
4     Afghanistan      Asia  1972
...           ...       ...   ...
1699     Zimbabwe    Africa  1987
1700     Zimbabwe    Africa  1992
1701     Zimbabwe    Africa  1997
1702     Zimbabwe    Africa  2002
1703     Zimbabwe    Africa  2007

[1704 rows x 3 columns]

Using the square bracket notation, [ ], you cannot pass an index position to subset a DataFrame based on the position of the columns. If you want to do this, look down for the .iloc[] notation.

# subset the first column based on its position.
df[0]

KeyError: 0

1.3.1.1 Single Value Returns DataFrame or Series

When we first selected a single column we were given a Series object back.

country_df = df['country']
print(type(country_df))

<class 'pandas.core.series.Series'>

We can also tell it’s a Series because it prints out slightly differently from the DataFrame.

print(country_df)

0       Afghanistan
1       Afghanistan
2       Afghanistan
3       Afghanistan
4       Afghanistan
           ...
1699       Zimbabwe
1700       Zimbabwe
1701       Zimbabwe
1702       Zimbabwe
1703       Zimbabwe
Name: country, Length: 1704, dtype: object

Compare those results to passing in a single element list (note the double square bracket, [[ ]]):

country_df_list = df[['country']] # note the double square bracket
print(type(country_df_list))

<class 'pandas.core.frame.DataFrame'>

If we use a list to subset, we will always get a DataFrame object back.

print(country_df_list)

          country
0     Afghanistan
1     Afghanistan
2     Afghanistan
3     Afghanistan
4     Afghanistan
...           ...
1699     Zimbabwe
1700     Zimbabwe
1701     Zimbabwe
1702     Zimbabwe
1703     Zimbabwe

[1704 rows x 1 columns]

Depending on what you need, sometimes you only need a single Series (sometimes called a vector), other times for consistency, you will want a DataFrame object.

1.3.1.2 Using Dot Notation to Pull a Column of Values

When all you need is a single column (i.e., Series or vector) of values and typing df['column'] will be very tedious. There is a shorthand notation where you can pull the column vector by treating it as a DataFrame attribute.

For example, below are two ways of returning the same single column Series.

# using square bracket notation
print(df['country'])

0       Afghanistan
1       Afghanistan
2       Afghanistan
3       Afghanistan
4       Afghanistan
            ...
1699       Zimbabwe
1700       Zimbabwe
1701       Zimbabwe
1702       Zimbabwe
1703       Zimbabwe
Name: country, Length: 1704, dtype: object

# using dot notation
print(df.country)

0      Afghanistan
1      Afghanistan
2      Afghanistan
3      Afghanistan
4      Afghanistan
           ...
1699      Zimbabwe
1700      Zimbabwe
1701      Zimbabwe
1702      Zimbabwe
1703      Zimbabwe
Name: country, Length: 1704, dtype: object

There are subtle differences if you want to do other operations (e.g., deleting a column), but for now, you can treat those 2 ways of getting a single column of values as the same. You do have to be mindful of what your columns are named if you want to use the dot notation. That is, if there is a column named shape, the df.shape will return the number of rows and columns from the .shape attribute, not the intended shape column. Also, if your column name has spaces or special characters, you will not be able to use the dot notation to select that column of values, and will have to use the square bracket notation.

1.3.2 Subset Rows

Rows can be subset in multiple ways, by row name or row index. Table 1.2 gives a quick overview of the various methods.


Table 1.2 Different Methods of Indexing Rows (and/or Columns)a
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1.3.2.1 Subset Rows by index Label - .loc[]

If we take a look at our gapminder data:

print(df)

         country continent  year  lifeExp       pop    gdpPercap
0    Afghanistan      Asia  1952   28.801   8425333   779.445314
1    Afghanistan      Asia  1957   30.332   9240934   820.853030
2    Afghanistan      Asia  1962   31.997  10267083   853.100710
3    Afghanistan      Asia  1967   34.020  11537966   836.197138
4    Afghanistan      Asia  1972   36.088  13079460   739.981106
...          ...       ...   ...      ...       ...          ...
1699    Zimbabwe    Africa  1987   62.351   9216418   706.157306
1700    Zimbabwe    Africa  1992   60.377  10704340   693.420786
1701    Zimbabwe    Africa  1997   46.809  11404948   792.449960
1702    Zimbabwe    Africa  2002   39.989  11926563   672.038623
1703    Zimbabwe    Africa  2007   43.487  12311143   469.709298

[1704 rows x 6 columns]

We can see on the left side of the printed DataFrame, what appear to be row numbers. This column-less row of values is the “index” label of the DataFrame. Think of it like column names, but, for rows. By default, Pandas will fill in the index labels with the row numbers (note that it starts counting from 0). A common example where the row index labels are not the row number is when we work with time series data. In that case, the index label will be a timestamp, but for now, we will keep the default row number values.

We can use the .loc[] accessor attribute on the DataFrame to subset rows based on the index label.

# get the first row
# python counts from 0
print(df.loc[0])

country       Afghanistan
continent            Asia
year                 1952
lifeExp            28.801
pop               8425333
gdpPercap      779.445314
Name: 0, dtype: object

# get the 100th row
# python counts from 0
print(df.loc[99])

country      Bangladesh
continent          Asia
year               1967
lifeExp          43.453
pop            62821884
gdpPercap    721.186086
Name: 99, dtype: object

# get the last row
# this will cause an error
print(df.loc[ -1])

KeyError: -1

Note that passing -1 as the .loc[] will cause an error because it is actually looking for the row index label (i.e., row number) -1, which does not exist in our example DataFrame. Instead, we can use a bit of Python to calculate the total number of rows, and then pass that value into .loc[].

# get the last row (correctly)

# use the first value given from shape to get the number of rows
number_of_rows = df.shape[0]

# subtract 1 from the value since we want the last index value
last_row_index = number_of_rows - 1

# finally do the subset using the index of the last row
print(df.loc[last_row_index])

country        Zimbabwe
continent        Africa
year               2007
lifeExp          43.487
pop            12311143
gdpPercap    469.709298
Name: 1703, dtype: object

Or use the .tail() method to return the last n=1 row, instead of the default 5.

# there are many ways of doing what you want
print(df.tail(n =1))

       country continent  year  lifeExp       pop    gdpPercap
1703  Zimbabwe    Africa  2007   43.487  12311143   469.709298

Notice that using .tail() and .loc[] printed out the results differently. Let’s look at what type is returned when we use these methods.

# get the last row of data in different ways
subset_loc = df.loc[0]
subset_head = df.head(n=1)

# type using loc of 1 row
print(type(subset_loc))

<class 'pandas.core.series.Series'>

# type of using head of 1 row
print(type(subset_head))

<class 'pandas.core.frame.DataFrame'>

At the beginning of this chapter, we mentioned that Pandas introduces two new data types into Python: Series and DataFrame. Depending on which method we use and how many rows we return, Pandas will return a different object. The way an object gets printed to the screen can be an indicator of the type, but it’s always best to use the type() function to be sure. We go into more detail about these objects in Chapter 2.

1.3.2.2 Subsetting Multiple Rows

As with columns, we can filter multiple rows.

print(df.loc[[0, 99, 999]])

         country continent   year   lifeExp       pop      gdpPercap
0    Afghanistan      Asia   1952    28.801   8425333     779.445314
99    Bangladesh      Asia   1967    43.453  62821884     721.186086
999     Mongolia      Asia   1967    51.253   1149500    1226.041130

1.3.3 Subset Rows by Row Number: .iloc[]

.iloc[] does the same thing as .loc[], but is used to subset by the row index number. In our current example, .iloc[] and .locp[] will behave exactly the same way since the index labels are the row numbers. However, keep in mind that the index labels do not necessarily have to be row numbers.

# get the 2nd row
print(df.iloc[1])

country      Afghanistan
continent           Asia
year                1957
lifeExp           30.332
pop              9240934
gdpPercap      820.85303
Name: 1, dtype: object

## get the 100th row
print(df.iloc[99])

country      Bangladesh
continent          Asia
year               1967
lifeExp          43.453
pop            62821884
gdpPercap    721.186086
Name: 99, dtype: object

Note that when we subset on 1, we actually get the second row, rather than the first row. This follows Python’s zero-indexed behavior, meaning that the first item of a container is index 0 (i.e., 0th item of the container). More details about this kind of behavior are found in Appendix F, Appendix I, and Appendix M.

With .iloc[], we can pass in the -1 to get the last row — something we couldn’t do with .loc[].

# using -1 to get the last row
print(df.iloc[ -1])

country        Zimbabwe
continent        Africa
year               2007
lifeExp          43.487
pop            12311143
gdpPercap    469.709298
Name: 1703, dtype: object

Just as before, we can pass in a list of integers to get multiple rows.

## get the first, 100th, and 1000th row
print(df.iloc[[0, 99, 999]])

         country continent  year  lifeExp       pop      gdpPercap
0    Afghanistan      Asia  1952   28.801   8425333     779.445314
99    Bangladesh      Asia  1967   43.453  62821884     721.186086
999     Mongolia      Asia  1967   51.253   1149500    1226.041130

1.3.4 Mix It Up

We can use .loc[] and .iloc[] to obtain subsets rows, columns, or both. The general syntax for .loc[] and .iloc[] uses square brackets with a comma. The part to the left of the comma is the row values to subset; the part to the right of the comma is the column values to subset. That is, df.loc[[rows], [columns]] or df.iloc[[rows], [columns]].

1.3.4.1 Selecting Columns

If we want to use these techniques to just subset columns, we must use Python’s slicing syntax (Appendix I). We need to do this because if we are subsetting columns, we are getting all the rows for the specified column. So, we need a method to capture all the rows.

The Python slicing syntax uses a colon, :. If we have just a colon, it “slices” (i.e., gets) all the values in that axis. So, if we just want to get the first column using the .loc[] or .iloc[] syntax, we can write df.loc[:, [columns]] to subset the column(s).

# subset columns with loc
# note the position of the colon
# it is used to select all rows
subset = df.loc[:, ['year', 'pop']]
print(subset)

      year        pop
0     1952    8425333
1     1957    9240934
2     1962   10267083
3     1967   11537966
4     1972   13079460
...    ...        ...
1699  1987    9216418
1700  1992   10704340
1701  1997   11404948
1702  2002   11926563
1703  2007   12311143

[1704 rows x 2 columns]

# subset columns with iloc
# iloc will allow us to use integers
# -1 will select the last column
subset = df.iloc[:, [2, 4, -1]]
print(subset)

      year        pop   gdpPercap
0     1952    8425333  779.445314
1     1957    9240934  820.853030
2     1962   10267083  853.100710
3     1967   11537966  836.197138
4     1972   13079460  739.981106
...     ...        ...        ...

1699  1987    9216418  706.157306
1700  1992   10704340  693.420786
1701  1997   11404948  792.449960
1702  2002   11926563  672.038623
1703  2007   12311143  469.709298

[1704 rows x 3 columns]

We will get an error if we don’t specify .loc[] or iloc[] correctly.

# subset columns with loc
# but pass in integer values
# this will cause an error
subset = df.loc[:, [2, 4, -1]]
print(subset)

KeyError: "None of [Int64Index([2, 4, -1], dtype='int64')]
are in the [columns]"

# subset columns with iloc
# but pass in index names
# this will cause an error
subset = df.iloc[:, ['year', 'pop']]
print(subset)

IndexError: .iloc requires numeric indexers, got ['year' 'pop']

1.3.4.2 Subsetting with range()

You can use the built-in range() function to create a range of values in Python. This way you can specify beginning and end values, and Python will automatically create a range of values in between. By default, every value between the beginning and the end (inclusive left, exclusive right; see Appendix I) will be created, unless you specify a step (Appendix I and Appendix M). In Python 3, the range() function returns a generator. A generator is like a single-use list; it disappears after you use it once. This is mainly to save system resources. See Appendix M for more information about generators.

We just saw in Section 1.3.4.1 how we can select columns using a list of integers. Since range() returns a generator, we have to first convert the generator to a list.

# create a range of integers from 0 - 4 inclusive
small_range = list(range(5))
print(small_range)

[0, 1, 2, 3, 4]

# subset the dataframe with the range
subset = df.iloc[:, small_range]
print(subset)

         country continent  year  lifeExp       pop
0    Afghanistan      Asia  1952   28.801   8425333
1    Afghanistan      Asia  1957   30.332   9240934
2    Afghanistan      Asia  1962   31.997  10267083
3    Afghanistan      Asia  1967   34.020  11537966
4    Afghanistan      Asia  1972   36.088  13079460
...          ...       ...   ...      ...       ...
1699    Zimbabwe    Africa  1987   62.351   9216418
1700    Zimbabwe    Africa  1992   60.377  10704340
1701    Zimbabwe    Africa  1997   46.809  11404948
1702    Zimbabwe    Africa  2002   39.989  11926563
1703    Zimbabwe    Africa  2007   43.487  12311143

[1704 rows x 5 columns]

Note that when list(range(5)) is called, five integers are returned: 0 – 4.

# create a range from 3 - 5 inclusive
small_range = list(range(3, 6))
print(small_range)

[3, 4, 5]

subset = df.iloc[:, small_range]
print(subset)

      lifeExp       pop   gdpPercap
0      28.801   8425333  779.445314
1      30.332   9240934  820.853030
2      31.997  10267083  853.100710
3      34.020  11537966  836.197138
4      36.088  13079460  739.981106
...       ...       ...         ...
1699   62.351   9216418  706.157306
1700   60.377  10704340  693.420786
1701   46.809  11404948  792.449960
1702   39.989  11926563  672.038623
1703   43.487  12311143  469.709298

[1704 rows x 3 columns]


Question

What happens when you specify a range() that’s beyond the number of columns you have?



Again, note that the values are specified in a way such that the range is inclusive on the left, and exclusive on the right.

We can also pass in a 3rd parameter into range, step, that allows us to change how to increment between the start and stop values (defaults to step=1).

# create a range from 0 - 5 inclusive, every other integer
small_range = list(range(0, 6, 2))
subset = df.iloc[:, small_range]
print(subset)

        country    year       pop
0     Afghanistan  1952   8425333
1     Afghanistan  1957   9240934
2     Afghanistan  1962  10267083
3     Afghanistan  1967  11537966
4     Afghanistan  1972  13079460
...           ...   ...       ...
1699     Zimbabwe  1987   9216418
1700     Zimbabwe  1992  10704340
1701     Zimbabwe  1997  11404948
1702     Zimbabwe  2002  11926563
1703     Zimbabwe  2007  12311143

[1704 rows x 3 columns]

Converting a generator to a list is a bit awkward; we can use the Python slicing syntax to fix this.

1.3.4.3 Subsetting with Slicing :

Python’s slicing syntax, :, is similar to the range() function. Instead of a function that specifies start, stop, and step values delimited by a comma, we separate the values with the colon, :.

If you understand what was going on with the range() function earlier, then slicing can be seen as a shorthand for the same thing.

The range() function can be used to create a generator that can also be converted to a list of values. The colon syntax, :, only has meaning within the square bracket, [ ] slicing and subsetting context; it has no inherent meaning on its own.

Here are the columns of our data set.

print(df.columns)

Index(['country', 'continent', 'year', 'lifeExp', 'pop',
       'gdpPercap'],
    dtype='object')

See how range() and : are used to slice our data.

small_range = list(range(3))
subset = df.iloc[:, small_range]
print(subset)

         country continent  year
0    Afghanistan      Asia  1952
1    Afghanistan      Asia  1957
2    Afghanistan      Asia  1962
3    Afghanistan      Asia  1967
4    Afghanistan      Asia  1972
...          ...       ...   ...
1699    Zimbabwe    Africa  1987
1700    Zimbabwe    Africa  1992
1701    Zimbabwe    Africa  1997
1702    Zimbabwe    Africa  2002
1703    Zimbabwe    Africa  2007

[1704 rows x 3 columns]

# slice the first 3 columns
subset = df.iloc[:, :3]
print(subset)

         country continent  year
0    Afghanistan      Asia  1952
1    Afghanistan      Asia  1957
2    Afghanistan      Asia  1962
3    Afghanistan      Asia  1967
4    Afghanistan      Asia  1972
...          ...       ...   ...
1699    Zimbabwe    Africa  1987
1700    Zimbabwe    Africa  1992
1701    Zimbabwe    Africa  1997
1702    Zimbabwe    Africa  2002
1703    Zimbabwe    Africa  2007

[1704 rows x 3 columns]

small_range = list(range(3, 6))
subset = df.iloc[:, small_range]
print(subset)

      lifeExp       pop   gdpPercap
0      28.801   8425333  779.445314
1      30.332   9240934  820.853030
2      31.997  10267083  853.100710
3      34.020  11537966  836.197138
4      36.088  13079460  739.981106
...       ...       ...         ...
1699   62.351   9216418  706.157306
1700   60.377  10704340  693.420786
1701   46.809  11404948  792.449960
1702   39.989  11926563  672.038623

1703 43.487 12311143 469.709298

[1704 rows x 3 columns]

# slice columns 3 to 5 inclusive
subset = df.iloc[:, 3:6]
print(subset)

     lifeExp       pop   gdpPercap
0     28.801   8425333  779.445314
1     30.332   9240934  820.853030
2     31.997  10267083  853.100710
3     34.020  11537966  836.197138
4     36.088  13079460  739.981106
...      ...       ...         ...
1699  62.351   9216418  706.157306
1700  60.377  10704340  693.420786
1701  46.809  11404948  792.449960
1702  39.989  11926563  672.038623
1703  43.487  12311143  469.709298

[1704 rows x 3 columns]

small_range = list(range(0, 6, 2))
subset = df.iloc[:, small_range]
print(subset)

         country    year       pop
0    Afghanistan    1952   8425333
1    Afghanistan    1957   9240934
2    Afghanistan    1962  10267083
3    Afghanistan    1967  11537966
4    Afghanistan    1972  13079460
...          ...     ...      ...
1699    Zimbabwe    1987   9216418
1700    Zimbabwe    1992  10704340
1701    Zimbabwe    1997  11404948
1702    Zimbabwe    2002  11926563
1703    Zimbabwe    2007  12311143

[1704 rows x 3 columns]

# slice every other columns
subset = df.iloc[:, 0:6:2]
print(subset)

         country    year       pop
0    Afghanistan    1952   8425333
1    Afghanistan    1957   9240934
2    Afghanistan    1962  10267083
3    Afghanistan    1967  11537966
4    Afghanistan    1972  13079460
...          ...     ...       ...
1699    Zimbabwe    1987   9216418
1700    Zimbabwe    1992  10704340
1701    Zimbabwe    1997  11404948
1702    Zimbabwe    2002  11926563
1703    Zimbabwe    2007  12311143

[1704 rows x 3 columns]


Question

What happens if you use the slicing method with 2 colons, but leave a value out? For example:

[image: Images] df.iloc[:, 0:6:]

[image: Images] df.iloc[:, 0::2]

[image: Images] df.iloc[:, :6:2]

[image: Images] df.iloc[:, ::2]

[image: Images] df.iloc[:, ::]



1.3.5 Subsetting Rows and Columns

When only using the colon, :, in .loc[] and .iloc[] to the left of the comma, we select all the rows in our dataframe (i.e., we slice all the values in the first axis of our DataFrame). However, we can choose to put values to the left of the comma if we want to select specific rows along with specific columns.

# using loc
print(df.loc[42, 'country'])

Angola

# using iloc
print(df.iloc[42, 0])

Angola

Just make sure you don’t confuse the differences between .loc[] and .iloc[].

# will cause an error
print(df.loc[42, 0])

KeyError: 0

1.3.5.1 Subsetting Multiple Rows and Columns

We can combine the row and column subsetting syntax with the multiple-row and multiple-column subsetting syntax to get various slices of our data.

# get the 1st, 100th, and 1000th rows
# from the 1st, 4th, and 6th column
# note the columns we are hoping to get are:
# country, lifeExp, and gdpPercap
print(df.iloc[[0, 99, 999], [0, 3, 5]])

         country    lifeExp    gdpPercap
0    Afghanistan     28.801   779.445314
99    Bangladesh     43.453   721.186086
999     Mongolia     51.253  1226.041130

In my own work, I try to pass in the actual column names when subsetting data whenever possible (i.e., I try to use .loc[] as much as I can). That approach makes the code more readable since you do not need to look at the column name vector to know which index is being called. Additionally, using absolute indexes can lead to problems if the column order gets changed. This is just a general rule of thumb, as there will be exceptions where using the index position is a better option (e.g., concatenating data in Chapter 6).

# if we use the column names directly,
# it makes the code a bit easier to read
# note now we have to use loc, instead of iloc
print(df.loc[[0, 99, 999], ['country', 'lifeExp', 'gdpPercap']])

         country   lifeExp   gdpPercap
0    Afghanistan   28.801   779.445314
99    Bangladesh   43.453   721.186086
999     Mongolia   51.253  1226.041130


Important

Remember, you can use the slicing syntax on the row portion of the .loc[] and .iloc[] attributes. Pay attention to the differences in how those two attributes select values: .loc[] matches on the named value, and .iloc[] slices by position.

The results below are slightly different for the very reason.

print(df.loc[10:13, :])

         country continent  year  lifeExp       pop    gdpPercap
10   Afghanistan      Asia  2002   42.129  25268405   726.734055
11   Afghanistan      Asia  2007   43.828  31889923   974.580338
12       Albania    Europe  1952   55.230   1282697  1601.056136
13       Albania    Europe  1957   59.280   1476505  1942.284244

print(df.iloc[10:13, :])

        country continent  year  lifeExp       pop     gdpPercap
10  Afghanistan      Asia  2002   42.129  25268405    726.734055
11  Afghanistan      Asia  2007   43.828  31889923    974.580338
12      Albania    Europe  1952   55.230   1282697   1601.056136

More detail about how slicing works in Python is described in Appendix I.



1.4 Grouped and Aggregated Calculations

If you’ve worked with other Python libraries or programming languages, you know that many basic statistical calculations either come with the library or are built into the language. Let’s look at our Gapminder data again.

print(df)

         country continent  year  lifeExp       pop   gdpPercap
0    Afghanistan      Asia  1952   28.801   8425333  779.445314
1    Afghanistan      Asia  1957   30.332   9240934  820.853030
2    Afghanistan      Asia  1962   31.997  10267083  853.100710
3    Afghanistan      Asia  1967   34.020  11537966  836.197138
4    Afghanistan      Asia  1972   36.088  13079460  739.981106
...          ...       ...   ...      ...       ...         ...
1699    Zimbabwe    Africa  1987   62.351   9216418  706.157306
1700    Zimbabwe    Africa  1992   60.377  10704340  693.420786
1701    Zimbabwe    Africa  1997   46.809  11404948  792.449960
1702    Zimbabwe    Africa  2002   39.989  11926563  672.038623
1703    Zimbabwe    Africa  2007   43.487  12311143  469.709298

[1704 rows x 6 columns]

There are several initial questions that we can ask ourselves:

[image: Images] For each year in our data, what was the average life expectancy? What is the average life expectancy, population, and GDP?

[image: Images] What if we stratify the data by continent and perform the same calculations?

[image: Images] How many countries are listed in each continent?

1.4.1 Grouped Means

To answer the questions just posed, we need to perform a grouped (i.e., aggregate) calculation. In other words, we need to perform a calculation, be it an average or a frequency count, but apply it to each subset of a variable. Another way to think about grouped calculations is as a split–apply–combine process. We first split our data into various parts, then apply a function (or calculation) of our choosing to each of the split parts, and finally combine all the individual split calculations into a single dataframe. We accomplish grouped (i.e., aggregate) computations by using the .groupby() method on DataFrames. Grouped calculations are further discussed in Chapter 8.

# For each year in our data, what was the average life expectancy?
# To answer this question, we need to:
# 1. split our data into parts by year
# 2. get the 'lifeExp' column
# 3. calculate the mean
print(df.groupby('year')['lifeExp'].mean())

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

Let’s unpack the statement we used in this example. We first create a grouped object.

# create grouped object by year
grouped_year_df = df.groupby('year')
print(type(grouped_year_df))

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

If we printed the grouped DataFrame Pandas would return only the memory location.

print(grouped_year_df)

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x15fdb7df0>

From the grouped data, we can subset the columns of interest on which we want to perform our calculations. To our question, lifeExp column. We can use the subsetting methods described in Section 1.3.1.

grouped_year_df_lifeExp = grouped_year_df['lifeExp']
print(type(grouped_year_df_lifeExp))

<class 'pandas.core.groupby.generic.SeriesGroupBy'>

print(grouped_year_df_lifeExp)

<pandas.core.groupby.generic.SeriesGroupBy object at 0x106c55ae0>

Notice that we now are given a series (because we asked for only one column) and the contents of the series are grouped (in our example by year).

Finally, we know the lifeExp column is of type float64. An operation we can perform on a vector of numbers is to calculate the mean to get our final desired result.

mean_lifeExp_by_year = grouped_year_df_lifeExp.mean()
print(mean_lifeExp_by_year)

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

We can perform a similar set of calculations for the population and GDP since they are of types int64 and float64, respectively. But what if we want to group and stratify the data by more than one variable? And what if we want to perform the same calculation on multiple columns? We can build on the material earlier in this chapter by using a list!

# the backslash allows us to break up 1 long line of python code
# into multiple lines
# df.groupby(['year', 'continent'])[['lifeExp', 'gdpPercap']].mean()
# is the same as
multi_group_var = df\
  .groupby(['year', 'continent'])\
  [['lifeExp', 'gdpPercap']]\
  .mean()

# look at the first 10 rows
print(multi_group_var)

                 lifeExp        gdpPercap
year continent
1952 Africa      39.135500    1252.572466
     Americas    53.279840   4079.062552
     Asia        46.314394   5195.484004
     Europe      64.408500   5661.057435
     Oceania     69.255000  10298.085650
...                    ...           ...
2007 Africa      54.806038   3089.032605

     Americas    73.608120  11003.031625
     Asia        70.728485  12473.026870
     Europe      77.648600  25054.481636
     Oceania     80.719500  29810.188275

[60 rows x 2 columns]

We can also use round parentheses, ( ) for “method chaining” (more about this notation in Appendix D.1).

# we can also wrap the entire statement
# around round parentheses
# with each .method() on a new line
# this is the preferred style for writing "method chaining"
multi_group_var = (
  df
  .groupby(['year', 'continent'])
  [['lifeExp', 'gdpPercap']]
  .mean()
)

The output data is grouped by year and continent. For each year–continent pair, we calculated the average life expectancy and average GDP. The data is also printed out a little differently. Notice the year and continent column names are not on the same line as the life expectancy and GPD column names. There is some hierarchal structure between the year and continent row indices. We’ll discuss working with these types of data in more detail in Section 8.5.

If you need to “flatten” the DataFrame, you can use the .reset_index() method.

flat = multi_group_var.reset_index()
print(flat)

    year continent    lifeExp      gdpPercap
0   1952    Africa  39.135500    1252.572466
1   1952  Americas  53.279840    4079.062552
2   1952      Asia  46.314394    5195.484004
3   1952    Europe  64.408500    5661.057435
4   1952   Oceania  69.255000   10298.085650
..   ...       ...        ...            ...
55  2007    Africa  54.806038    3089.032605
56  2007  Americas  73.608120   11003.031625
57  2007      Asia  70.728485   12473.026870
58  2007    Europe  77.648600   25054.481636
59  2007   Oceania  80.719500   29810.188275

[60 rows x 4 columns]


Question

Does the order of the list we used to group the data matter?



1.4.2 Grouped Frequency Counts

Another common data-related task is to calculate frequencies. We can use the .nunique() and .value_counts() methods, respectively, to get counts of unique values and frequency counts on a Pandas Series.

# use the nunique (number unique)
# to calculate the number of unique values in a series
print(df.groupby('continent')['country'].nunique())

continent
Africa    52
Americas  25
Asia      33
Europe    30
Oceania    2
Name: country, dtype: int64


Question

What do you get if you use .value_counts() instead of .nunique()?



1.5 Basic Plot

Visualizations are extremely important in almost every step of the data process. They help us identify trends in data when we are trying to understand and clean the data, and they help us convey our final findings. More information about visualization and plotting is described in Chapter 3.

Let’s look at the yearly life expectancies for the world population again.

global_yearly_life_expectancy = df.groupby('year')['lifeExp'].mean()
print(global_yearly_life_expectancy)

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

We can use Pandas to create some basic plots as shown in Figure 1.1. More about plotting is covered in Chapter 3.

# matplotlib is the default plotting library
# we need to import first
import matplotlib.pyplot as plt

# use the .plot() DataFrame method
global_yearly_life_expectancy.plot()

# show the plot
plt.show()


[image: Images]

Figure 1.1 Basic plot in Pandas showing average life expectancy over time



Conclusion

This chapter explained how to load up a simple data set and start looking at specific observations. It may seem tedious at first to look at observations this way, especially if you are already familiar with the use of a spreadsheet program. Keep in mind that when doing data analytics, the goal is to produce reproducible results, not repeat repetitive tasks, and be able to combine multiple data sources as needed. Scripting languages give you that ability and flexibility.

Along the way, you learned about some of the fundamental programming abilities and data structures that Python has to offer. You also encountered a quick way to obtain aggregated statistics and plots. The next chapter goes into more detail about the Pandas DataFrame and Series objects, as well as other ways you can subset and visualize your data.

As you work your way through this book, if there is a concept or data structure that is foreign to you, check the various appendices for more information. Many fundamental programming features of Python are covered in the appendices.



2

Pandas Data Structures Basics

Chapter 1 introduced the Pandas DataFrame and Series objects. These data structures resemble the primitive Python data containers (lists and dictionaries) for indexing and labeling, but have additional features that make working with data easier.

Learning Objectives

The concept map for this chapter can be found in Figure A-2.

[image: Images] Use functions to create and load manual data

[image: Images] Describe the Series object

[image: Images] Describe the DataFrame object

[image: Images] Identify basic operations on Series objects

[image: Images] Identify basic operations on DataFrame objects

[image: Images] Perform conditional subsetting, fancy slicing, and indexing

[image: Images] Use methods to save data

2.1 Create Your Own Data

Whether you are manually inputting data or creating a small test example, knowing how to create DataFrames without loading data from a file is a useful skill. It is especially helpful when you are asking a question about a StackOverflow error.

2.1.1 Create a Series

The Pandas Series is a one-dimensional container (i.e., Python Iterable), similar to the built-in Python list. It is the data type that represents each column of the DataFrame. Table 1.1 lists the possible dtypes for Pandas DataFrame columns. Each value in a DataFrame column must be stored as the same dtype. For example, if a column contains the number 1 and the sequence of letters (i.e., string) "pizza", the entire dtype of the column will be a string (Pandas will call this an object dtype).

Since a DataFrame can be thought of as a dictionary of Series objects, where each key is the column name and the value is the Series, we can conclude that a Series is very similar to a Python list, except that each element must be the same dtype. Those who have used the numpy library will realize this is the same behavior as demonstrated by the ndarray.

The easiest way to create a Series is to pass in a Python list. If we pass in a list of mixed types, the most common representation of both will be used. Typically the dtype will be object.

import pandas as pd

s = pd.Series(['banana', 42])
print(s)

0    banana
1        42
dtype: object

Notice that the “row number” is shown on the left of the Series. This is actually the index for the series. It is similar to the row name and row index we saw in Section 1.3.2 for DataFrames. It implies that we can actually assign a “name” to values in our series.

# manually assign index values to a series
# by passing a Python list
s = pd.Series(
data =["Wes McKinney", "Creator of Pandas"],
index =["Person", "Who"],
)

print(s)

Person         Wes McKinney
Who       Creator of Pandas
dtype: object


Question

[image: Images] What happens if you use other Python containers such as list, tuple, dict, or even the ndarray from the numpy library?

[image: Images] What happens if you pass an index along with the containers?

[image: Images] Does passing in an index when you use a dict overwrite the index? Or does it sort the values?



2.1.2 Create a DataFrame

As mentioned in Chapter 1, a DataFrame can be thought of as a dictionary of Series objects. This is why dictionaries are the most common way of creating a DataFrame. The key represents the column name, and the values are the contents of the column.

scientists = pd.DataFrame(
  {
    "Name": ["Rosaline Franklin", "William Gosset"],
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "Age": [37, 61],
  }
)

print(scientists)

                Name    Occupation        Born        Died  Age
0  Rosaline Franklin       Chemist  1920-07-25  1958-04-16   37
1     William Gosset  Statistician  1876-06-13  1937-10-16   61

If we look at the documentation for DataFrame1, we see that we can use the columns parameter or specify the column order. If we want to use the name column for the row index, we can use the index parameter.

1. DataFrame documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.xhtml

scientists = pd.DataFrame(
  data ={
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "Age": [37, 61],
  },
  index =["Rosaline Franklin", "William Gosset"],
  columns =["Occupation", "Born", "Died", "Age"],
)
print(scientists)

                    Occupation        Born        Died  Age
Rosaline Franklin      Chemist  1920-07-25  1958-04-16   37
William Gosset    Statistician  1876-06-13  1937-10-16   61

2.2 The Series

In Section 1.3.2.1, we saw how the slicing method affects the type of the result. If we use .loc[] to subset the first row of our scientists DataFrame, we will get a Series object back.

First, let’s re-create our example DataFrame.

# create our example dataframe
# with a row index label
scientists = pd.DataFrame(
  data ={
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "Age": [37, 61],
  },
  index =["Rosaline Franklin", "William Gosset"],
  columns =["Occupation", "Born", "Died", "Age"],
)

print(scientists)

                    Occupation        Born        Died  Age
Rosaline Franklin      Chemist  1920-07-25  1958-04-16   37
William Gosset    Statistician  1876-06-13  1937-10-16   61

Select a scientist by the row index label.

# select by row index label
first_row = scientists.loc['William Gosset']
print(type(first_row))

<class 'pandas.core.series.Series'>

print(first_row)

Occupation    Statistician
Born            1876-06-13
Died            1937-10-16
Age                     61
Name: William Gosset, dtype: object

When a series is printed (i.e., the string representation), the index is printed as the first “column”, and the values are printed as the second “column”. There are many attributes and methods associated with a Series object.2 Two examples of attributes are .index and .values.

2. Series documentation: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.xhtml

print(first_row.index)

Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')

print(first_row.values)

['Statistician' '1876-06-13' '1937-10-16' 61]


Table 2.1 Some of the Attributes Within a Series

[image: Images]



An example of a Series method is .keys(), which is an alias for the .index attribute.

print(first_row.keys())

Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')

By now, you might have questions about the syntax for .index, .values, and .keys(). More information about attributes and methods is found in Appendix P on classes. Attributes can be thought of as features of an object (in this example, our object is a Series). Methods can be thought of as some calculation or operation that is performed on an object. The subsetting syntax for .loc[] and .iloc[] (from Section 1.3.2) consists of all attributes. This is why the syntax does not rely on a set of round parentheses, ( ), but rather a set of square brackets, [ ], for subsetting. Since .keys() is a method, if we wanted to get the first key (which is also the first index), we would use the square brackets after the method call. Some attributes for the series are listed in Table 2.1.

# get the first index using an attribute
print(first_row.index[0])

Occupation

# get the first index using a method
print(first_row.keys()[0])

Occupation

2.2.1 The Series Is ndarray-like

The Pandas data structure known as Series is very similar to the numpy.ndarray (Appendix O). In turn, many methods and functions that operate on a ndarray will also operate on a Series. A Series may sometimes be referred to as a “vector”.

2.2.1.1 Series Methods

Let’s first get a series of the Age column from our scientists dataframe.

# get the 'Age' column
ages = scientists['Age']
print(ages)

Rosaline Franklin    37
William Gosset       61
Name: Age, dtype: int64

NumPy is a scientific computing library that typically deals with numeric vectors. Since a Series can be thought of as an extension to the numpy.ndarray, there is an overlap of attributes and methods. When we have a vector of numbers, there are common calculations we can perform.3

3. Descriptive statistics: https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.xhtml#descriptive-statistics

# calculate the mean
print(ages.mean())

49.0

# calculate the minimum
print(ages.min())

37

# calculate the maximum
print(ages.max())

61

# calculate the standard deviation
print(ages.std())

16.97056274847714

The .mean(), .min(), .max(), and .std() are also methods in the numpy.ndarray.4

4. NumPy ndarrary documentation: https://numpy.org/doc/stable/reference/arrays.ndarray.xhtml

Some Series methods are listed in Table 2.2.

2.2.2 Boolean Subsetting: Series

Chapter 1 showed how we can use specific indices to subset our data. Only rarely, however, will we know the exact row or column index to subset the data. Typically you are looking for values that meet (or don’t meet) a particular calculation or observation.

To explore this process, let’s use a larger data set.

scientists = pd.read_csv('data/scientists.csv')

We just saw how we can calculate basic descriptive metrics of vectors. The .describe() method will calculate multiple descriptive statistics in a single method call.

        ages = scientists['Age']
        print(ages)


Table 2.2 Some of the Methods That Can Be Performed on a Series

[image: Images]



5. Missing values will be automatically dropped.

6. Missing values will be automatically dropped.

7. Missing values will be automatically dropped.

0    37
1    61
2    90
3    66
4    56
5    45
6    41
7    77
Name: Age, dtype: int64

# get basic stats
print(ages.describe())

count    8.000000
mean    59.125000
std     18.325918

min     37.000000
25%     44.000000
50%     58.500000
75%     68.750000
max     90.000000
Name: Age, dtype: float64

# mean of all ages
print(ages.mean())

59.125

What if we wanted to subset our ages by identifying those above the mean?

print(ages[ages > ages.mean()])

1    61
2    90
3    66
7    77
Name: Age, dtype: int64

Let’s tease out this statement and look at what ages > ages.mean() returns.

print(ages > ages.mean())

0    False
1     True
2     True
3     True
4    False
5    False
6    False
7     True
Name: Age, dtype: bool

print(type(ages > ages.mean()))

<class 'pandas.core.series.Series'>

This statement returns a Series with a .dtype of bool. In other words, we can not only subset values using labels and indices, but also supply a vector of boolean values. Python has many functions and methods. Depending on how they are implemented, they may return labels, indices, or booleans. Keep this point in mind as you learn new methods and seek to piece together various parts for your work.

If we liked, we could manually supply a vector of bools to subset our data.

# get index 0, 1, 4, 5, and 7
manual_bool_values = [
  True,  # 0
  True,  # 1
  False, # 2
  False, # 3
  True,  # 4
  True,  # 5
  False, # 6
  True,  # 7
]
print(ages[manual_bool_values])

0    37
1    61
4    56
5    45
7    77
Name: Age, dtype: int64

2.2.3 Operations Are Automatically Aligned and Vectorized (Broadcasting)

If you’re familiar with programming, you would find it strange that ages > ages.mean() returns a vector without any for loops (Appendix J). Many of the methods that work on Series (and also DataFrames) are “vectorized”, meaning that they work on the entire vector simultaneously. This approach makes the code easier to read, and typically, optimizations are available to make calculations faster.

2.2.3.1 Vectors of the Same Length

If you perform an operation between two vectors of the same length, the resulting vector will be an element-by-element calculation of the vectors.

print(ages + ages)

0     74
1    122
2    180
3    132
4    112
5     90
6     82
7    154
Name: Age, dtype: int64

print(ages * ages)

0    1369
1    3721
2    8100
3    4356
4    3136
5    2025
6    1681
7    5929
Name: Age, dtype: int64

2.2.3.2 Vectors With Integers (Scalars)

When you perform an operation on a vector using a scalar, the scalar will be recycled across all the elements in the vector.

print(ages + 100)

0    137
1    161
2    190
3    166
4    156
5    145
6    141
7    177
Name: Age, dtype: int64

print(ages * 2)

0     74
1    122
2    180
3    132
4    112
5     90
6     82
7    154
Name: Age, dtype: int64

2.2.3.3 Vectors With Different Lengths

When you are working with vectors of different lengths, the behavior will depend on the type() of the vectors. With a Series, the vectors will perform an operation matched by the index. The rest of the resulting vector will be filled with a “missing” value, denoted with NaN, signifying “not a number” (Chapter 9).

This type of behavior, which is called broadcasting, differs between languages. Broadcasting in Pandas refers to how operations are calculated between arrays with different shapes.

print(ages + pd.Series([1, 100]))

0     38.0
1    161.0
2      NaN
3      NaN
4      NaN
5      NaN
6      NaN
7      NaN
dtype: float64

With other types(), the shapes must match.

import numpy as np

# this will cause an error
print(ages + np.array([1, 100]))

ValueError: operands could not be broadcast together with shapes (8,) (2,)

2.2.3.4 Vectors With Common Index Labels (Automatic Alignment)

What’s convenient in Pandas is how data alignment is almost always automatic. If possible, things will always align themselves with the index label when actions are performed.

# ages as they appear in the data
print(ages)

0    37
1    61
2    90
3    66
4    56
5    45
6    41
7    77
Name: Age, dtype: int64

rev_ages = ages.sort_index(ascending =False)
print(rev_ages)

7    77
6    41
5    45
4    56
3    66
2    90
1    61
0    37
Name: Age, dtype: int64

If we perform an operation using ages and rev_ages, it will still be conducted on an element-by-element basis, but the vectors will be aligned first before the operation is carried out.

# reference output to show index label alignment
print(ages * 2)

0     74
1    122
2    180
3    132
4    112
5     90
6     82
7    154
Name: Age, dtype: int64

# note how we get the same values
# even though the vector is reversed
print(ages + rev_ages)

0     74
1    122
2    180
3    132
4    112
5     90
6     82
7    154
Name: Age, dtype: int64

2.3 The DataFrame

The DataFrame is the most common Pandas object. It can be thought of as Python’s way of storing spreadsheet-like data. Many of the features of the Series data structure carry over into the DataFrame.

2.3.1 Parts of a DataFrame

There are 3 main parts to a Pandas DataFrame object the .index, .columns, and .values. These refer to the row name, column names, and data values, respectively.

scientists.index

RangeIndex(start=0, stop=8, step=1)

scientists.columns

Index(['Name', 'Born', 'Died', 'Age', 'Occupation'], dtype='object')

scientists.values

array([['Rosaline Franklin', '1920-07-25', '1958-04-16', 37, 'Chemist'],
       ['William Gosset', '1876-06-13', '1937-10-16', 61, 'Statistician'],
       ['Florence Nightingale', '1820-05-12', '1910-08-13', 90, 'Nurse'],
       ['Marie Curie', '1867-11-07', '1934-07-04', 66, 'Chemist'],
       ['Rachel Carson', '1907-05-27', '1964-04-14', 56, 'Biologist'],
       ['John Snow', '1813-03-15', '1858-06-16', 45, 'Physician'],
       ['Alan Turing', '1912-06-23', '1954-06-07', 41,
        'Computer Scientist'],
       ['Johann Gauss', '1777-04-30', '1855-02-23', 77, 'Mathematician']],
       dtype=object)

The .values comes in handy when you don’t want all the row index label information, and really just want the base numpy representation of the data.

2.3.2 Boolean Subsetting: DataFrames

Just as we were able to subset a Series with a boolean vector, so can we subset a DataFrame with a bool.

# boolean vectors will subset rows
print(scientists.loc[scientists['Age'] > scientists['Age'].mean()])

                   Name        Born        Died  Age     Occupation
1        William Gosset  1876-06-13  1937-10-16   61   Statistician
2  Florence Nightingale  1820-05-12  1910-08-13   90          Nurse
3           Marie Curie  1867-11-07  1934-07-04   66        Chemist
7          Johann Gauss  1777-04-30  1855-02-23   77  Mathematician

Table 2.3 summarizes the various subsetting methods.


Table 2.3 Table of DataFrame Subsetting Methods

[image: Images]



2.3.3 Operations Are Automatically Aligned and Vectorized (Broadcasting)

Pandas supports broadcasting because the Series and DataFrame objects are built on top of the numpy library.8 Broadcasting describes what happens when performing operations between array-like objects. These behaviors depend on the type of object, its length, and any labels associated with the object.

8. NumPy Library: http://www.numpy.org/

First, let’s create a subset of our dataframes.

first_half = scientists[:4]
second_half = scientists[4:]

print(first_half)

                   Name        Born        Died    Age    Occupation
0     Rosaline Franklin  1920-07-25  1958-04-16     37       Chemist
1        William Gosset  1876-06-13  1937-10-16     61  Statistician
2  Florence Nightingale  1820-05-12  1910-08-13     90         Nurse
3           Marie Curie  1867-11-07  1934-07-04     66       Chemist

print(second_half)

            Name        Born        Died  Age          Occupation
4  Rachel Carson  1907-05-27  1964-04-14   56           Biologist
5      John Snow  1813-03-15  1858-06-16   45           Physician
6    Alan Turing  1912-06-23  1954-06-07   41  Computer Scientist
7   Johann Gauss  1777-04-30  1855-02-23   77       Mathematician

When we perform an action on a dataframe with a scalar, it will try to apply the operation on each cell of the dataframe. In this example, numbers will be multiplied by 2, and strings will be doubled (this is Python’s normal behavior with strings).

# multiply by a scalar
print(scientists * 2)

                                       Name                  Born  \
0        Rosaline FranklinRosaline Franklin  1920-07-251920-07-25
1              William GossetWilliam Gosset  1876-06-131876-06-13
2  Florence NightingaleFlorence Nightingale  1820-05-121820-05-12
3                    Marie CurieMarie Curie  1867-11-071867-11-07
4                Rachel CarsonRachel Carson  1907-05-271907-05-27
5                        John SnowJohn Snow  1813-03-151813-03-15
6                    Alan TuringAlan Turing  1912-06-231912-06-23
7                  Johann GaussJohann Gauss  1777-04-301777-04-30

                   Died  Age                            Occupation
0  1958-04-161958-04-16   74                        ChemistChemist
1  1937-10-161937-10-16  122              StatisticianStatistician
2  1910-08-131910-08-13  180                            NurseNurse
3  1934-07-041934-07-04  132                        ChemistChemist
4  1964-04-141964-04-14  112                    BiologistBiologist
5  1858-06-161858-06-16   90                    PhysicianPhysician
6  1954-06-071954-06-07   82  Computer ScientistComputer Scientist
7  1855-02-231855-02-23  154            MathematicianMathematician

If your dataframes are all numeric values and you want to “add” the values on a cell-by-cell basis, you can use the .add() method. The automatic alignment can be better seen in Chapter 6, when we concatenate dataframes together.

2.4 Making Changes to Series and DataFrames

Now that we know various ways of subsetting and slicing our data (see Table 2.3), we should be able to alter our data objects.

2.4.1 Add Additional Columns

The type of the Born and Died columns is object, meaning they are strings or a sequence of characters.

print(scientists.dtypes)

Name          object
Born          object
Died          object
Age            int64
Occupation    object
dtype: object

We can convert the strings to a proper datetime type so we can perform common date and time operations (e.g., take differences between dates or calculate a person’s age). You can provide your own format if you have a date that has a specific format. A list of format variables can be found in the Python datetime module documentation.9 More examples with datetimes can be found in Chapter 12. The format of our date looks like “YYYY-MM-DD”, so we can use the %Y-%m-%d format.

9. datetime module documentation: https://docs.python.org/3.10/library/datetime.xhtml#strftime-and-strptime-behavior

# format the 'Born' column as a datetime
born_datetime = pd.to_datetime(scientists['Born'], format='%Y-%m-%d')
print(born_datetime)

0    1920-07-25
1    1876-06-13
2    1820-05-12
3    1867-11-07
4    1907-05-27
5    1813-03-15
6    1912-06-23
7    1777-04-30
Name: Born, dtype: datetime64[ns]

# format the 'Died' column as a datetime
died_datetime = pd.to_datetime(scientists['Died'], format ='%Y-%m -%d')

If we wanted, we could create a new set of columns that contain the datetime representations of the object (string) dates. The below example uses python’s multiple assignment syntax (Appendix N).

scientists['born_dt'], scientists['died_dt'] = (
  born_datetime,
  died_datetime
)

print(scientists.head())

                   Name        Born        Died  Age    Occupation  \
0     Rosaline Franklin  1920-07-25  1958-04-16   37       Chemist
1        William Gosset  1876-06-13  1937-10-16   61  Statistician
2  Florence Nightingale  1820-05-12  1910-08-13   90         Nurse
3           Marie Curie  1867-11-07  1934-07-04   66       Chemist
4         Rachel Carson  1907-05-27  1964-04-14   56     Biologist

     born_dt     died_dt
0 1920-07-25  1958-04-16
1 1876-06-13  1937-10-16
2 1820-05-12  1910-08-13
3 1867-11-07  1934-07-04
4 1907-05-27  1964-04-14

print(scientists.shape)

(8, 7)

print(scientists.dtypes)

Name                  object
Born                  object
Died                  object
Age                    int64
Occupation            object
born_dt       datetime64[ns]
died_dt       datetime64[ns]
dtype: object

2.4.2 Directly Change a Column

We can also assign a new value directly to the existing column. The example in this section shows how to randomize the contents of a column. More complex calculations that involve multiple columns can be seen in Chapter 5, in the discussion of the .apply() method.

First, let’s look at the original Age values.

print(scientists['Age'])

0  37
1  61
2  90
3  66
4  56
5  45
6  41
7  77
Name: Age, dtype: int64

Now let’s shuffle the values.

# the frac=1 tells pandas to randomly select 100% of the values
# the random_state makes the randomization the same each time
scientists["Age"] = scientists["Age"].sample(frac =1, random_state =42)


Note

We set a random_state as a way to make sure it randomly picks the same values on each run of the code. This way the code stats consistent when the code from the book is generated. But this technique is also useful when you are programming to make sure your values are not constantly fluctuating when you are trying to do something randomly. You can always remove it to make it completely random every time the code runs.



For long bits of code we can wrap the code around round parentheses ( ) to break up the code into multiple lines. We will be using this convention for longer bits of code in this book (Appendix D.1).

# the previous line of code is equivalent to
scientists['Age'] = (
  scientists['Age']
  .sample(frac=1, random_state =42)
)

print(scientists['Age'])

0    37
1    61
2    90
3    66
4    56
5    45
6    41
7    77
Name: Age, dtype: int64

If you notice, that we tried to randomly shuffle the column, but when we assigned the values back into the dataframe, it reverted back to the original order. That’s because Pandas will try to automatically join on the .index values on many operations, for this example to get around this problem we need to remove that .index information. One way of doing that, is to assign just the .values of the shuffled values that does not have any .index value associated with it.

scientists['Age'] = (
scientists['Age']
  .sample(frac=1, random_state =42)
  .values # remove the index so it doesn't auto align the values
)

print(scientists['Age'])

0    61
1    45
2    37
3    77
4    90
5    56
6    66
7    41
Name: Age, dtype: int64

We can recalculate the “real” age using datetime arithmetic. More information about datetime can be found in Chapter 12.

# subtracting dates will give us number of days
scientists['age_days'] = (
  scientists['died_dt'] - scientists['born_dt']
)

print(scientists)

                   Name        Born        Died  Age  \
0     Rosaline Franklin  1920-07-25  1958-04-16   61
1        William Gosset  1876-06-13  1937-10-16   45
2  Florence Nightingale  1820-05-12  1910-08-13   37
3           Marie Curie  1867-11-07  1934-07-04   77
4         Rachel Carson  1907-05-27  1964-04-14   90
5             John Snow  1813-03-15  1858-06-16   56
6           Alan Turing  1912-06-23  1954-06-07   66
7          Johann Gauss  1777-04-30  1855-02-23   41

            Occupation    born_dt    died_dt   age_days
0              Chemist 1920-07-25 1958-04-16 13779 days
1         Statistician 1876-06-13 1937-10-16 22404 days
2                Nurse 1820-05-12 1910-08-13 32964 days
3              Chemist 1867-11-07 1934-07-04 24345 days
4            Biologist 1907-05-27 1964-04-14 20777 days
5            Physician 1813-03-15 1858-06-16 16529 days
6   Computer Scientist 1912-06-23 1954-06-07 15324 days
7        Mathematician 1777-04-30 1855-02-23 28422 days

# we can convert the value to just the year
# using the astype method
scientists['age_years'] = (
  scientists['age_days']
  .astype('timedelta64[Y]')
)
print(scientists)

                   Name        Born        Died  Age  \
0     Rosaline Franklin  1920-07-25  1958-04-16   61
1        William Gosset  1876-06-13  1937-10-16   45
2  Florence Nightingale  1820-05-12  1910-08-13   37
3           Marie Curie  1867-11-07  1934-07-04   77
4         Rachel Carson  1907-05-27  1964-04-14   90
5             John Snow  1813-03-15  1858-06-16   56
6           Alan Turing  1912-06-23  1954-06-07   66
7          Johann Gauss  1777-04-30  1855-02-23   41

           Occupation    born_dt    died_dt   age_days  age_years
0             Chemist 1920-07-25 1958-04-16 13779 days       37.0
1        Statistician 1876-06-13 1937-10-16 22404 days       61.0
2               Nurse 1820-05-12 1910-08-13 32964 days       90.0
3             Chemist 1867-11-07 1934-07-04 24345 days       66.0
4           Biologist 1907-05-27 1964-04-14 20777 days       56.0
5           Physician 1813-03-15 1858-06-16 16529 days       45.0
6  Computer Scientist 1912-06-23 1954-06-07 15324 days       41.0
7       Mathematician 1777-04-30 1855-02-23 28422 days       77.0


Important

Many functions and methods in the pandas library will have an inplace parameter that you can set to the value True. When this is set, the function or method will return None instead of the modified dataframe. Generally, you do not want to use this parameter.

Contrary to popular belief, this does not make things go faster, and the parameter may be deprecated in the future: https://github.com/pandas-dev/pandas/issues/16529



2.4.3 Modifying Columns with .assign()

Another way you can assign and modify columns is with the .assign() method. This has the benefit of using method chaining (Appendix R). Let’s redo the age_years column creation, but this time using '.assign().

scientists = scientists.assign(
  # new columns on the left of the equal sign
  # how to calculate values on the right of the equal sign
  # separate new columns with a comma
  age_days_assign=scientists['died_dt'] - scientists['born_dt'],
  age_year_assign=scientists['age_days'].astype('timedelta64[Y]')
)

print(scientists)

                   Name        Born       Died  Age  \
0     Rosaline Franklin  1920-07-25  1958-04-16  61
1        William Gosset  1876-06-13  1937-10-16  45
2  Florence Nightingale  1820-05-12  1910-08-13  37
3           Marie Curie  1867-11-07  1934-07-04  77
4         Rachel Carson  1907-05-27  1964-04-14  90
5             John Snow  1813-03-15  1858-06-16  56
6           Alan Turing  1912-06-23  1954-06-07  66
7          Johann Gauss  1777-04-30  1855-02-23  41

           Occupation    born_dt    died_dt   age_days  age_years  \
0             Chemist 1920-07-25 1958-04-16 13779 days       37.0
1        Statistician 1876-06-13 1937-10-16 22404 days       61.0
2               Nurse 1820-05-12 1910-08-13 32964 days       90.0
3             Chemist 1867-11-07 1934-07-04 24345 days       66.0
4           Biologist 1907-05-27 1964-04-14 20777 days       56.0
5           Physician 1813-03-15 1858-06-16 16529 days       45.0
6  Computer Scientist 1912-06-23 1954-06-07 15324 days       41.0
7       Mathematician 1777-04-30 1855-02-23 28422 days       77.0

  age_days_assign  age_year_assign
0      13779 days             37.0
1      22404 days             61.0
2      32964 days             90.0
3      24345 days             66.0
4      20777 days             56.0
5      16529 days             45.0
6      15324 days             41.0
7      28422 days             77.0

You can look into the .assign() documentation for more examples.10 Since this is only showing a simple example of how to use the method to assign new values. Effectively using .assign() will require you to know about lambda functions, which we will cover in Chapter 5.

10. .assign() documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.xhtml


Note

In the example we just did with .assign(), we did not use the first new value, age_days_assign, in the calculation for the second new value, age_year_assign. We would have to know how to write a lambda functions to know how the following code works.

scientists = scientists.assign(
    age_days_assign=scientists["died_dt"] - scientists["born_dt"],
    age_year_assign =lambda df_: df_["age_days_assign"].astype(
        "timedelta64[Y]"
    ),
)
print(scientists)

                   Name        Born        Died  Age  \
0     Rosaline Franklin  1920-07-25  1958-04-16   61
1        William Gosset  1876-06-13  1937-10-16   45
2  Florence Nightingale  1820-05-12  1910-08-13   37
3           Marie Curie  1867-11-07  1934-07-04   77
4         Rachel Carson  1907-05-27  1964-04-14   90
5             John Snow  1813-03-15  1858-06-16   56
6           Alan Turing  1912-06-23  1954-06-07   66
7          Johann Gauss  1777-04-30  1855-02-23   41

           Occupation    born_dt    died_dt   age_days  age_years  \
0             Chemist 1920-07-25 1958-04-16 13779 days       37.0
1        Statistician 1876-06-13 1937-10-16 22404 days       61.0
2               Nurse 1820-05-12 1910-08-13 32964 days       90.0
3             Chemist 1867-11-07 1934-07-04 24345 days       66.0
4           Biologist 1907-05-27 1964-04-14 20777 days       56.0
5           Physician 1813-03-15 1858-06-16 16529 days       45.0
6  Computer Scientist 1912-06-23 1954-06-07 15324 days       41.0
7       Mathematician 1777-04-30 1855-02-23 28422 days       77.0

  age_days_assign  age_year_assign
0      13779 days             37.0
1      22404 days             61.0
2      32964 days             90.0
3      24345 days             66.0
4      20777 days             56.0
5      16529 days             45.0
6      15324 days             41.0
7      28422 days             77.0



2.4.4 Dropping Values

To drop a column, we can either select all the columns we want to by using the column subsetting techniques (Section 1.3.1), or select columns to drop with the .drop() method on our dataframe.11

11. DataFrame .drop() method: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.xhtml

# all the current columns in our data
print(scientists.columns)

Index(['Name', 'Born', 'Died', 'Age', 'Occupation', 'born_dt',
       'died_dt', 'age_days', 'age_years', 'age_days_assign',
       'age_year_assign'], dtype='object')

# drop the shuffled age column
# you provide the axis=1 argument to drop column-wise
scientists_dropped = scientists.drop(['Age'], axis ="columns")

# columns after dropping our column
print(scientists_dropped.columns)

Index(['Name', 'Born', 'Died', 'Occupation', 'born_dt', 'died_dt',
       'age_days', 'age_years', 'age_days_assign',
       'age_year_assign'],
      dtype='object')

2.5 Exporting and Importing Data

In our examples so far, we have been importing data. It is also common practice to export or save data sets while processing them. Data sets are either saved out as final cleaned versions of data or in intermediate steps. Both of these outputs can be used for analysis or as input to another part of the data processing pipeline.


Tip

It’s okay to save intermediate data set files as you work. You do not need to process all your data and analysis in one giant code script.

Saving the data output from one script that gets imported from another is the basis of creating data pipelines.



2.5.1 Pickle

Python has a way to pickle data. This is Python’s way of serializing and saving data in a binary format. Reading pickle data is also backwards compatible. pickle files are usually saved with an extension of .p, .pkl, or .pickle. We will see how to save and load pickle data below.

2.5.1.1 Series

Many of the export methods for a Series are also available for a DataFrame. Those readers who have experience with numpy will know that a .save() method is available for ndarrays. This method has been deprecated, and the replacement is to use the .to_pickle method.

names = scientists['Name']
print(names)

0       Rosaline Franklin
1          William Gosset
2    Florence Nightingale
3             Marie Curie
4           Rachel Carson
5               John Snow
6             Alan Turing
7            Johann Gauss
Name: Name, dtype: object

# pass in a string to the path you want to save
names.to_pickle('output/scientists_names_series.pickle')

The pickle output is in a binary format. If you try to open it in a text editor, you will see a bunch of garbled characters.

If the object you are saving is an intermediate step in a set of calculations that you want to save, or if you know that your data will stay in the Python world, saving objects to a pickle will be optimized for Python and disk storage space. However, this approach means that people who do not use Python will not be able to read the data.

2.5.1.2 DataFrame

The same method can be used on DataFrame objects.

scientists.to_pickle('output/scientists_df.pickle')

2.5.1.3 Read pickle data

To read pickle data, we can use the pd.read_pickle() function.

# for a Series
series_pickle = pd.read_pickle(
    "output/scientists_names_series.pickle"
)
print(series_pickle)

0       Rosaline Franklin
1          William Gosset
2    Florence Nightingale
3             Marie Curie
4           Rachel Carson
5               John Snow
6             Alan Turing
7            Johann Gauss
Name: Name, dtype: object

# for a DataFrame
dataframe_pickle = pd.read_pickle('output/scientists_df.pickle')
print(dataframe_pickle)

                   Name        Born        Died  Age \
0     Rosaline Franklin  1920-07-25  1958-04-16   61
1        William Gosset  1876-06-13  1937-10-16   45
2  Florence Nightingale  1820-05-12  1910-08-13   37
3           Marie Curie  1867-11-07  1934-07-04   77
4         Rachel Carson  1907-05-27  1964-04-14   90
5             John Snow  1813-03-15  1858-06-16   56
6           Alan Turing  1912-06-23  1954-06-07   66
7          Johann Gauss  1777-04-30  1855-02-23   41

           Occupation    born_dt    died_dt   age_days  age_years  \
0             Chemist 1920-07-25 1958-04-16 13779 days       37.0
1        Statistician 1876-06-13 1937-10-16 22404 days       61.0
2               Nurse 1820-05-12 1910-08-13 32964 days       90.0
3             Chemist 1867-11-07 1934-07-04 24345 days       66.0
4           Biologist 1907-05-27 1964-04-14 20777 days       56.0
5           Physician 1813-03-15 1858-06-16 16529 days       45.0
6  Computer Scientist 1912-06-23 1954-06-07 15324 days       41.0
7       Mathematician 1777-04-30 1855-02-23 28422 days       77.0

  age_days_assign  age_year_assign
0      13779 days             37.0
1      22404 days             61.0
2      32964 days             90.0
3      24345 days             66.0
4      20777 days             56.0
5      16529 days             45.0
6      15324 days             41.0
7      28422 days             77.0

Again, the pickle files are saved with an extension of .p, .pkl, or .pickle.

2.5.2 Comma-Separated Values (CSV)

Comma-separated values (CSV) are the most flexible data storage type. For each row, the column information is separated with a comma. The comma is not the only type of delimiter, however. Some files are delimited by a tab (TSV) or even a semicolon. The main reason why CSVs are a preferred data format when collaborating and sharing data is because any program can open this kind of data structure. It can even be opened in a text editor. However, the universal storage format does come at a price. CSV files are usually slower and take up more disk space when compared to other binary formats.

The Series and DataFrame have a .to_csv() method to write a CSV file. The documentation for Series12 and DataFrame13 identifies many different ways you can modify the resulting CSV file. For example, if you wanted to save a TSV file because there are commas in your data, you can change the sep parameter (Appendix O).

12. Saving a Series to CSV: https://pandas.pydata.org/docs/reference/api/pandas.Series.to_csv.xhtml

13. Saving a DataFrame to CSV: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.xhtml

By default, the .index of a DataFrame gets written to the CSV file. This creates a file where the first column does not have a name, and only holds the row numbers of the dataframe being saved. This extraneous column in the CSV becomes problematic when you try to read the CSV back into Pandas. So we typically put in the index=False parameter when saving CSV files to avoid this problem.

# do not write the row names in the CSV output
scientists.to_csv('output/scientists_df_no_index.csv', index =False)

2.5.2.1 Import CSV Data

Importing CSV files was illustrated in Section 1.2. This operation uses the pd.read_csv() function. In the documentation, you can see there are various ways to read in a CSV.14 Look at Appendix O if you need more information on using function parameters.

14. pd.read_csv() documentation: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.xhtml

2.5.3 Excel

Excel, which is probably the most commonly used data type (or the second most commonly used, after CSVs), has a bad reputation within the data science community, mainly because colors and other superfluous information can easily find its way into the data set, not to mention one-off calculations that ruin the rectangular structure of a data set. Some other reasons are listed at the very beginning of this chapter. The goal of this book isn’t to bash Excel, but to teach you about a reasonable alternative tool for data analytics. In short, the more of your work you can do in a scripting language, the easier it will be to scale up to larger projects, catch and fix mistakes, and collaborate. However, Excel’s popularity and market share are unrivaled. Excel has its own scripting language if you absolutely have to work in it. This will allow you to work with data in a more predictable and reproducible manner.

2.5.3.1 Series

The Series data structure does not have an explicit .to_excel() method. If you have a Series that needs to be exported to an Excel file, one option is to convert the Series into a one-column DataFrame.

Before saving and reading Excel files, make sure you have the openpyxl library installed (using pip install openpyxl See Appendix B).

print(names)

0       Rosaline Franklin
1          William Gosset
2    Florence Nightingale
3             Marie Curie
4           Rachel Carson
5               John Snow
6             Alan Turing
7            Johann Gauss
Name: Name, dtype: object

# convert the Series into a DataFrame
# before saving it to an Excel file
names_df = names.to_frame()

# save to an excel file
names_df.to_excel(
  'output/scientists_names_series_df.xls', engine='openpyxl'
)

2.5.3.2 DataFrames

From the preceding example, you can see how to export a DataFrame to an Excel file. The documentation shows several ways to further fine-tune the output.15 For example, you can output data to a specific “sheet” using the sheet_name parameter.

15. .to_excel() documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.xhtml

# saving a DataFrame into Excel format
scientists.to_excel(
  "output/scientists_df.xlsx",
  sheet_name="scientists",
  index=False
)

2.5.4 Feather

The format called “feather” is used to save DataFrames into a binary object that can also be loaded into other languages (e.g., R). The main benefit of this approach is that it is faster than writing and reading a CSV file between the languages. See the Pandas .to_feather()16 and feather file format documentation17 for more information on storing for backwards compatibility.

16. Pandas to_feather() documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_feather.xhtml

17. Feather file format documentation: https://arrow.apache.org/docs/python/feather.xhtml

The feather formatter is installed via conda install -c conda-forge pyarrow or pip install pyarrow. More on installing packages are described in Appendix B.

You can use the .to_feather() method on a dataframe to save the feather objects.

# save to feather file
scientists.to_feather('output/scientists.feather')

# read feather file
sci_feather = pd.read_feather('output/scientists.feather')

print(sci_feather)

                   Name        Born        Died  Age  \
0     Rosaline Franklin  1920-07-25  1958-04-16   61
1        William Gosset  1876-06-13  1937-10-16   45
2  Florence Nightingale  1820-05-12  1910-08-13   37
3           Marie Curie  1867-11-07  1934-07-04   77
4         Rachel Carson  1907-05-27  1964-04-14   90
5             John Snow  1813-03-15  1858-06-16   56
6           Alan Turing  1912-06-23  1954-06-07   66
7          Johann Gauss  1777-04-30  1855-02-23   41

           Occupation    born_dt    died_dt   age_days  age_years  \
0             Chemist 1920-07-25 1958-04-16 13779 days       37.0
1        Statistician 1876-06-13 1937-10-16 22404 days       61.0
2               Nurse 1820-05-12 1910-08-13 32964 days       90.0
3             Chemist 1867-11-07 1934-07-04 24345 days       66.0
4           Biologist 1907-05-27 1964-04-14 20777 days       56.0
5           Physician 1813-03-15 1858-06-16 16529 days       45.0
6  Computer Scientist 1912-06-23 1954-06-07 15324 days       41.0
7       Mathematician 1777-04-30 1855-02-23 28422 days       77.0

  age_days_assign  age_year_assign
0      13779 days             37.0
1      22404 days             61.0
2      32964 days             90.0
3      24345 days             66.0
4      20777 days             56.0
5      16529 days             45.0
6      15324 days             41.0
7      28422 days             77.0

2.5.5 Arrow

Feather files are part of the Apache Arrow project.18 One of the main goals of Arrow is to have a memory storage format for dataframe objects that work across multiple programming languages without having to convert types for each of them.

18. Apache Arrow: https://arrow.apache.org/docs/index.xhtml]


Note

The Apache Arrow project is separate from the Python Arrow library, which is used for Dates and Times: https://arrow.readthedocs.io/en/latest/



Arrow has its own Pandas integration19 to convert Pandas DataFrame objects to Arrow objects (from_pandas()20) and from Arrow objects to Pandas DataFrame objects (to_pandas()21). Once the data is in an Arrow format, it can much more efficiently be used in other programming languages.

19. Arrow Pandas integration: https://arrow.apache.org/docs/python/pandas.xhtml

20. Arrow from_pandas(): https://arrow.apache.org/docs/python/generated/pyarrow.Table.xhtml#pyarrow.Table.from_pandas

21. Arrow to_pandas(): https://arrow.apache.org/docs/python/generated/pyarrow.Table.xhtml#pyarrow.Table.to_pandas

2.5.6 Dictionary

The Pandas Series and DataFrame objects also have a .to_dict() method. This converts the object into a Python dictionary object. This format is particularly useful if you have a DataFrame or Series and you want to use the data from outside Pandas.

Let’s create a smaller subset of the scientist data so all the dictionary data will display properly

# first 2 rows of data sci_sub_dict = scientists.head(2)

# convert the dataframe into a dictionary
sci_dict = sci_sub_dict.to_dict()

# using the pretty print library to print the dictionary
import pprint
pprint.pprint(sci_dict)

{'Age': {0: 61, 1: 45},
 'Born': {0: '1920-07-25', 1: '1876-06-13'},
 'Died': {0: '1958-04-16', 1: '1937-10-16'},
 'Name': {0: 'Rosaline Franklin', 1: 'William Gosset'},
 'Occupation': {0: 'Chemist', 1: 'Statistician'},
 'age_days': {0: Timedelta('13779 days 00:00:00'),
              1: Timedelta('22404 days 00:00:00')},
 'age_days_assign': {0: Timedelta('13779 days 00:00:00'),
                     1: Timedelta('22404 days 00:00:00')},
 'age_year_assign': {0: 37.0, 1: 61.0}, 'age_years': {0: 37.0, 1: 61.0},
 'born_dt': {0: Timestamp('1920-07-25 00:00:00'),
             1: Timestamp('1876-06-13 00:00:00')},
 'died_dt': {0: Timestamp('1958-04-16 00:00:00'),
             1: Timestamp('1937-10-16 00:00:00')}}

Once the dictionary output is created, we can read it back into Pandas.

# read in the dictionary object back into a dataframe
sci_dict_df = pd.DataFrame.from_dict(sci_dict)
print(sci_dict_df)

                Name        Born        Died  Age    Occupation  \
0  Rosaline Franklin  1920-07-25  1958-04-16   61       Chemist
1     William Gosset  1876-06-13  1937-10-16   45  Statistician

     born_dt    died_dt   age_days  age_years age_days_assign  \
0 1920-07-25 1958-04-16 13779 days       37.0      13779 days
1 1876-06-13 1937-10-16 22404 days       61.0      22404 days

  age_year_assign
0            37.0
1            61.0


Danger

Because the scientists data set we are working with includes dates and times, we cannot simply copy and paste the dictionary as a string into the pd.DataFrame.from_dict() function. You will get a NameError: name 'Timedelta' is not defined error.

Dates and times are stored in a different format from what gets printed to the screen. Depending on the dtype stored in the columns, your ability to simply copy and paste the .to_dict() output may or may not return the same exact dataframe back.

If you need a way to work with dates, you will actually need to convert it into a more general format and convert the value back into a date.



2.5.7 JSON (JavaScript Objectd Notation)

JSON data is another common plain text file format. The benefit of using the .to_jsion() is that it can convert dates and times for you to read back into Pandas. By using orient='records' we can either pass in the variable or copy and paste from the output to load it back into Pandas. The indent=2 allows the output to print a bit nicer to the screen (and book).

# convert the dataframe into a dictionary
sci_json = sci_sub_dict.to_json(
  orient='records', indent=2, date_format ="iso"
)
pprint.pprint(sci_json)

('[\n'
 ' {\n'
 ' "Name":"Rosaline Franklin",\n'
 ' "Born":"1920-07-25",\n'
 ' "Died":"1958-04-16",\n'
 ' "Age":61,\n'
 ' "Occupation":"Chemist",\n'
 ' "born_dt":"1920-07-25T00:00:00.000Z",\n'
 ' "died_dt":"1958-04-16T00:00:00.000Z",\n'
 ' "age_days":"P13779DT0H0M0S",\n'
 ' "age_years":37.0,\n'
 ' "age_days_assign":"P13779DT0H0M0S",\n'
 ' "age_year_assign":37.0\n'
 ' },\n'
 ' {\n'
 '   "Name":"William Gosset",\n'
 '   "Born":"1876-06-13",\n'
 '   "Died":"1937-10-16",\n'
 '   "Age":45,\n'
 '   "Occupation":"Statistician",\n'
 '   "born_dt":"1876-06-13T00:00:00.000Z",\n'
 '   "died_dt":"1937-10-16T00:00:00.000Z",\n'
 '   "age_days":"P22404DT0H0M0S",\n'
 '   "age_years":61.0,\n'
 '   "age_days_assign":"P22404DT0H0M0S",\n'
 '   "age_year_assign":61.0\n'
 ' }\n'
 ']')

# copy the string to re-create the dataframe
sci_json_df = pd.read_json(
  ('[\n'
 ' {\n'
 '   "Name":"Rosaline Franklin",\n'
 '   "Born":"1920-07-25",\n'
 '   "Died":"1958-04-16",\n'
 '   "Age":61,\n'
 '   "Occupation":"Chemist",\n'
 '   "born_dt":"1920-07-25T00:00:00.000Z",\n'
 '   "died_dt":"1958-04-16T00:00:00.000Z",\n'
 '   "age_days":"P13779DT0H0M0S",\n'
 '   "age_years":37.0,\n'
 '   "age_days_assign":"P13779DT0H0M0S",\n'
 '   "age_year_assign":37.0\n'
 ' },\n'
 ' {\n'
 '   "Name":"William Gosset",\n'
 '   "Born":"1876-06-13",\n'
 '   "Died":"1937-10-16",\n'
 '   "Age":45,\n'
 '   "Occupation":"Statistician",\n'
 '   "born_dt":"1876-06-13T00:00:00.000Z",\n'
 '   "died_dt":"1937-10-16T00:00:00.000Z",\n'
 '   "age_days":"P22404DT0H0M0S",\n'
 '   "age_years":61.0,\n'
 '   "age_days_assign":"P22404DT0H0M0S",\n'
 '   "age_year_assign":61.0\n'
 ' }\n'
 ']'),
  orient="records"
)
print(sci_json_df)

                Name   Born             Died   Age    Occupation \
0  Rosaline Franklin  1920-07-25  1958-04-16    61       Chemist
1     William Gosset  1876-06-13  1937-10-16    45  Statistician

                    born_dt                   died_dt  \
0  1920-07-25T00:00:00.000Z  1958-04-16T00:00:00.000Z
1  1876-06-13T00:00:00.000Z  1937-10-16T00:00:00.000Z

         age_days  age_years age_days_assign  age_year_assign
0  P13779DT0H0M0S         37  P13779DT0H0M0S               37
1  P22404DT0H0M0S         61  P22404DT0H0M0S               61

Notice how the dates are all different from the original values? That’s because we choose to convert the dates into ISO 8601 string format.

print(sci_json_df.dtypes)

Name               object
Born               object
Died               object
Age                 int64
Occupation         object
born_dt            object
died_dt            object
age_days           object
age_years           int64
age_days_assign    object
age_year_assign     int64
dtype: object

If we want the original datetime object back, we need to convert that representation back into a date.

sci_json_df["died_dt_json"] = pd.to_datetime(sci_json_df["died_dt"])

print(sci_json_df)

                Name        Born        Died  Age    Occupation  \
0  Rosaline Franklin  1920-07-25  1958-04-16   61       Chemist
1     William Gosset  1876-06-13  1937-10-16   45  Statistician

                    born_dt                   died_dt  \
0  1920-07-25T00:00:00.000Z  1958-04-16T00:00:00.000Z
1  1876-06-13T00:00:00.000Z  1937-10-16T00:00:00.000Z

         age_days  age_years  age_days_assign  age_year_assign  \
0  P13779DT0H0M0S         37   P13779DT0H0M0S               37
1  P22404DT0H0M0S         61   P22404DT0H0M0S               61

                died_dt_json
0  1958-04-16 00:00:00+00:00
1  1937-10-16 00:00:00+00:00

print(sci_json_df.dtypes)

Name                             object
Born                             object
Died                             object
Age                               int64
Occupation                       object
born_dt                          object
died_dt                          object
age_days                         object
age_years                         int64
age_days_assign                  object
age_year_assign                   int64
died_dt_json        datetime64[ns, UTC]
dtype: object

Working with dates and times is always tricky. We talk more about them in Chapter 12.

2.5.8 Other Data Output Types

There are many ways Pandas can export and import data. Indeed, .to_pickle(), .to_csv(), .to_excel(), .to_feather(), .to_dict() are only some of the data formats that can make their way into Pandas DataFrames. Table 2.4 lists some of these other output formats.


Table 2.4 DataFrame Export Methods
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Conclusion

This chapter went into a little more detail about how the Pandas Series and DataFrame objects work in Python. There were some simpler examples of data cleaning shown, along with a few common ways to export data to share with others. Chapter 1 and Chapter 2 should give you a good basis on how Pandas works as a library.

The next chapter covers the basics of plotting in Python and Pandas. Data visualization is not only used at the end of an analysis to plot results, but also is heavily utilized throughout the entire data pipeline.



3

Plotting Basics

Data visualization is as much a part of the data processing step as the data presentation step. It is much easier to compare plotted values than to compare numerical values. By visualizing data we can get a better intuitive sense of the data than would be possible by looking at tables of values alone. Additionally, visualizations can bring to light hidden patterns in data, that you, the analyst, can use for model selection.

Learning Objectives

The concept map for this chapter can be found in Figure A-3.

[image: Images] Explain why visualizing data is important
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[image: Images] Use plotting functions from the matplotlib, seaborn, and pandas libraries
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[image: Images] Use different color palettes to make plots more accessible

3.1 Why Visualize Data?

The quintessential example for creating visualizations of data is Anscombe’s quartet. This data set was created by English statistician Frank Anscombe to show the importance of statistical graphs.

The Anscombe data set contains four sets of data, each of which contains two continuous variables. Each set has the same mean, variance, correlation, and regression line. However, only when the data are visualized does it become obvious that each set does not follow the same pattern. This goes to show the benefits of visualizations and the pitfalls of looking at only summary statistics.

# the anscombe data set can be found in the seaborn library
import seaborn as sns
anscombe = sns.load_data set("anscombe")
print(anscombe)

 data  set     x      y
0       I   10.0   8.04
1       I    8.0   6.95
2       I   13.0   7.58
3       I    9.0   8.81
4       I   11.0   8.33
..    ...    ...    ...
39     IV    8.0   5.25
40     IV   19.0  12.50
41     IV    8.0   5.56
42     IV    8.0   7.91
43     IV    8.0   6.89

[44 rows x 3 columns]

3.2 Matplotlib Basics

matplotlib is Python’s fundamental plotting library. It is extremely flexible and gives the user full control over all elements of the plot.

Importing the matplotlib plotting features is a little different from our previous package imports. You can think of it as importing the package matplotlib, with all of the plotting utilities stored under a subfolder (or subpackage) called pyplot. Just as we imported a package and gave it an abbreviated name, we can do the same with matplotlib.pyplot.

import matplotlib.pyplot as plt

The names of most of the basic plots will start with plt.plot(). In our example, the plotting feature takes one vector for the x-values, and a corresponding vector for the y-values (Figure 3.1).
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Figure 3.1 Anscombe data set I



# create a subset of the data
# contains only data set 1 from anscombe
data set_1 = anscombe[anscombe['data set'] == 'I']

plt.plot(data set_1['x'], data set_1['y'])
plt.show() # will need this to show explicitly show the plot

By default, plt.plot() will draw lines. If we want it to draw points instead, we can pass an 'o' parameter to tell plt.plot() to use points (Figure 3.2).
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Figure 3.2 Anscombe data set I using points



plt.plot(data set_1['x'], data set_1['y'], 'o')
plt.show()

We can repeat this process for the rest of the data sets in our anscombe data.

# create subsets of the anscombe data
data set_2 = anscombe[anscombe['data set'] == 'II']
data set_3 = anscombe[anscombe['data set'] == 'III']
data set_4 = anscombe[anscombe['data set'] == 'IV']

3.2.1 Figure Objects and Axes Subplots

At this point, we could make these plots individually, but matplotlib offers a much handier way to create subplots. You can specify the dimensions of your final figure, and put in smaller plots to fit the specified dimensions. This way, you can present your results in a single figure.

The subplot syntax takes three parameters:

[image: Images] Number of rows in the figure for subplots

[image: Images] Number of columns in the figure for subplots

[image: Images] Subplot location

The subplot location is sequentially numbered, and plots are placed first in a left-to-right direction, then from top to bottom. If we try to plot this now (by running the following code), we will get an empty figure (Figure 3.3). All we have done so far is create a figure and split it into a 2 x 2 grid where plots can be placed. Since no plots were created and inserted, nothing will show up.
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Figure 3.3 Matplotlib figure with four empty axes in a 2x2 grid



# create the entire figure where our subplots will go
fig = plt.figure()

# tell the figure how the subplots should be laid out
# in the example, we will have
# 2 row of plots, and each row will have 2 plots

# subplot has 2 rows and 2 columns, plot location 1
axes1 = fig.add_subplot(2, 2, 1)

# subplot has 2 rows and 2 columns, plot location 2
axes2 = fig.add_subplot(2, 2, 2)

# subplot has 2 rows and 2 columns, plot location 3
axes3 = fig.add_subplot(2, 2, 3)

# subplot has 2 rows and 2 columns, plot location 4
axes4 = fig.add_subplot(2, 2, 4)

plt.show()

We can use the .plot() method on each axis to create our plot (Figure 3.4).
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Figure 3.4 Matplotlib figure with four scatter plots




Important

With a lot of plotting code, you need to run all the code together. Usually, running parts of it as you attempt to build on a figure will not return anything.



# you need to run all the plotting code together, same as above
fig = plt.figure()
axes1 = fig.add_subplot(2, 2, 1)
axes2 = fig.add_subplot(2, 2, 2)
axes3 = fig.add_subplot(2, 2, 3)
axes4 = fig.add_subplot(2, 2, 4)

# add a plot to each of the axes created above
axes1.plot(data set_1['x'], data set_1['y'], 'o')
axes2.plot(data set_2['x'], data set_2['y'], 'o')
axes3.plot(data set_3['x'], data set_3['y'], 'o')
axes4.plot(data set_4['x'], data set_4['y'], 'o')

plt.show()

Finally, we can add a label to our subplots, and improve the subplot spacing with fig.tight_layout(), but fig.set_tight_layout() is preferred (Figure 3.5).


[image: Images]

Figure 3.5 Anscombe data visualization



# you need to run all the plotting code together, same as above
fig = plt.figure()
axes1 = fig.add_subplot(2, 2, 1)
axes2 = fig.add_subplot(2, 2, 2)
axes3 = fig.add_subplot(2, 2, 3)
axes4 = fig.add_subplot(2, 2, 4)
axes1.plot(data set_1['x'], data set_1['y'], 'o')
axes2.plot(data set_2['x'], data set_2['y'], 'o')
axes3.plot(data set_3['x'], data set_3['y'], 'o')
axes4.plot(data set_4['x'], data set_4['y'], 'o')

# add a small title to each subplot
axes1.set_title("data set_1")
axes2.set_title("data set_2")
axes3.set_title("data set_3")
axes4.set_title("data set_4")

# add a title for the entire figure (title above the title)
fig.suptitle("Anscombe Data") # note spelling of "suptitle"

# use a tight layout so the plots and titles don't overlap
fig.set_tight_layout(True)

# show the figure
plt.show()

The Anscombe data visualizations illustrate why just looking at summary statistical values can be misleading. The moment the points are visualized, it becomes clearer that even though each data set has the same summary statistical values, the relationships between points vastly differ across the data sets.

To finish off the Anscombe example, we can add .set_xlabel() and .set_ylabel() to each of the subplots to add x- and y-axis labels, just as we added a title to the figure.

3.2.2 Anatomy of a Figure

Before we move on and learn how to create more statistical plots, you should become familiar with the matplotlib documentation on “Anatomy of a Figure.”1 I have reproduced its older figure in Figure 3.6, and the newer figure in Figure 3.7.
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Figure 3.6 Matplotlib anatomy of a figure (old version)
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Figure 3.7 Matplotlib anatomy of a figure (new version)



1. Anatomy of a matplotlib figure: https://matplotlib.org/stable/gallery/showcase/anatomy.xhtml

One of the most confusing parts of plotting in Python is the use of the terms “axis” and “axes” especially when trying to verbally describe the different parts (since they are pronounced similarly). In the Anscombe example, each individual subplot plot has axes. The axes contain both an x-axis and a y-axis. All four subplots together make the figure.

The remainder of the chapter shows you how to create statistical plots, first with matplotlib and later using a higher-level plotting library that is based on matplotlib and specifically made for statistical graphics, seaborn.


Important

Knowing whether or not a plotting function returns one or more axes or a figure will be important to know when plotting. For example, you can’t put a figure inside another figure as you can with one or more axes.



3.3 Statistical Graphics Using matplotlib

The tips data we will be using for the next series of visualizations come from the seaborn library. This data set contains the amount of the tips that people leave for various variables. For example, the total cost of the bill, the size of the party, the day of the week, and the time of day.

We can load this data set just as we did the Anscombe data set.

tips = sns.load_data set("tips")
print(tips)

    total_bill  tip    sex smoker  day   time size
0        16.99 1.01 Female     No  Sun Dinner    2
1        10.34 1.66   Male     No  Sun Dinner    3
2        21.01 3.50   Male     No  Sun Dinner    3
3        23.68 3.31   Male     No  Sun Dinner    2
4        24.59 3.61 Female     No  Sun Dinner    4
..         ...  ...    ...    ...  ...    ...  ...
239      29.03 5.92   Male     No  Sat Dinner    3
240      27.18 2.00 Female    Yes  Sat Dinner    2
241      22.67 2.00   Male    Yes  Sat Dinner    2
242      17.82 1.75   Male     No  Sat Dinner    2
243      18.78 3.00 Female     No Thur Dinner    2

[244 rows x 7 columns]

3.3.1 Univariate (Single Variable)

In statistics jargon, the term “univariate” refers to a single variable.

3.3.1.1 Histograms

Histograms are the most common means of looking at a single variable. The values are “binned”, meaning they are grouped together and plotted to show the distribution of the variable (Figure 3.8).
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Figure 3.8 Histogram using matplotlib



# create the figure object
fig = plt.figure()

# subplot has 1 row, 1 column, plot location 1
axes1 = fig.add_subplot(1, 1, 1)

# make the actual histogram
axes1.hist(data=tips, x='total_bill', bins=10)

# add labels
axes1.set_title('Histogram of Total Bill')
axes1.set_xlabel('Frequency')
axes1.set_ylabel('Total Bill')

plt.show()

3.3.2 Bivariate (Two Variables)

In statistics jargon, the term “bivariate” refers to two variables.

3.3.2.1 Scatter Plot

Scatter plots are used when a continuous variable is plotted against another continuous variable (Figure 3.9).
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Figure 3.9 Scatter plot using matplotlib



# create the figure object
scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1, 1, 1)

# make the actual scatter plot
axes1.scatter(data=tips, x='total_bill', y='tip')

# add labels
axes1.set_title('Scatterplot of Total Bill vs Tip')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')

plt.show()

3.3.2.2 Box Plot

Box plots are used when a discrete variable is plotted against a continuous variable (Figure 3.10).
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Figure 3.10 Box plot using matplotlib




Note

A discrete variable is usually something that is countable (using whole numbers). A continuous variable is usually a something that is measured and can have a decimal or fractional value.



# create the figure object
boxplot = plt.figure()
axes1 = boxplot.add_subplot(1, 1, 1)

# make the actual box plot
axes1.boxplot(
  # first argument of box plot is the data
  # since we are plotting multiple pieces of data
  # we have to put each piece of data into a list
  x=[
      tips.loc[tips["sex"] == "Female", "tip"],
      tips.loc[tips["sex"] == "Male", "tip"],
  ],
  # we can then pass in an optional labels parameter
  # to label the data we passed
  labels=["Female", "Male"],
)

# add labels
axes1.set_xlabel('Sex')
axes1.set_ylabel('Tip')
axes1.set_title('Boxplot of Tips by Gender')

plt.show()

3.3.3 Multivariate Data

Plotting multivariate data is tricky because there is not a panacea or template that can be used for every case. To illustrate the process of plotting multivariate data, let’s build on our earlier scatter plot.

If we wanted to add another variable, say sex, one option would be to color the points based on the value of the third variable. If we wanted to add a fourth variable, we could add size to the dots. The only caveat with using size as a variable is that humans are not very good at visually differentiating areas. Sure, if there’s an enormous dot next to a tiny one, the relationship will be conveyed. But smaller differences are difficult to distinguish and may add clutter to your visualization. One way to reduce clutter is to add some value of transparency to the individual points, such that many overlapping points will show a darker region of a plot than less crowded areas.

A general convention is that different colors are much easier to distinguish than changes in size. If you have to use areas to convey differences in values, be sure that you are actually plotting relative areas. A common pitfall is to map a value to the radius of a circle for plots, but since the formula for a circle is πr2, your areas are actually based on a squared scale. That is not only misleading but wrong.

Colors are also difficult to pick. Humans do not perceive hues on a linear scale, so you need to think carefully when picking color palettes. Luckily matplotlib2 and seaborn3 come with their own set of color palettes. Tools like colorbrewer4 can help you pick good color palettes.

2. matplotlib colormaps: https://matplotlib.org/stable/tutorials/colors/colormaps.xhtml

3. seaborn color palettes: https://seaborn.pydata.org/tutorial/color_palettes.xhtml

4. colorbrewer color palettes: http://colorbrewer2.org/

Figure 3.11 uses color to add a third variable, sex, to our scatter plot. Since our values for sex only contain 2 values: Male and Female, we need to “map” the values to a color.
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Figure 3.11 Matplotlib scatter plot with sex for the point color and size as point size



# assign color values
colors = {

    "Female": "#f1a340",  # orange
    "Male": "#998ec3",    # purple
}

scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1, 1, 1)

axes1.scatter(
  data=tips,
  x='total_bill',
  y='tip',

  # set the size of the dots based on party size
  # we multiply the values by 10 to make the points bigger
  # and also to emphasize the difference
  s=tips["size"] ** 2 * 10,

  # set the color for the sex using our color values above
  c=tips['sex'].map(colors),

  # set the alpha so points are more transparent
  # this helps with overlapping points
  alpha=0.5
)

# label the axes
axes1.set_title('Colored by Sex and Sized by Size')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')

# figure title on top
scatter_plot.suptitle("Total Bill vs Tip")

plt.show()

matplotlib is an imperative plotting library. We’ll see how other declarative plotting libraries allow us to make exploratory plots.

3.4 Seaborn

matplotlib is a core plotting tool in Python. seaborn builds on matplotlib by providing a higher-level declarative interface for statistical graphics. It gives us the ability to create more complex visualizations with fewer lines of code. The seaborn library is tightly integrated with the pandas library and the rest of the PyData stack (numpy, scipy, statsmodels, etc.), making visualizations from any part of the data analysis easier. Since seaborn is built on top of matplotlib, the user can still fine-tune the visualizations.

We’ve already loaded the seaborn library to access its data sets.

# load seaborn if you have not done so already
import seaborn as sns

tips = sns.load_data set("tips")

You will be able to look up all the seaborn plotting function documentation from the official seaborn site and then going to the API reference.5

5. seaborn website: https://seaborn.pydata.org/

For print, we are also going to set the "paper" context, to change some of the default font size, line width, axis tics, etc.

# set the default seaborn context optimized for paper print
# the default is "notebook"
sns.set_context("paper")

3.4.1 Univariate

Just like we did with the matplotlib examples, we will make a series of univariate plots.

3.4.1.1 Histogram

Histograms are created using sns.histplot() (Figure 3.12).
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Figure 3.12 Seaborn histplot



Instead of two separate steps of creating an empty figure, and then specifying the individual axes subplots, We can create the figure with all the axes in a single step with the subplots() function. By default it will return two things back. The first thing will be the figure object, the second will be all the axes objects. We can then use the Python multiple assignment syntax to assign the parts to variables in a single step (Appendix Q).

From there we can use the Figure and axes objects just like before.

# the subplots function is a shortcut for
# creating separate figure objects and
# adding individual subplots (axes) to the figure
hist, ax = plt.subplots()

# use seaborn to draw a histogram into the axes
sns.histplot(data=tips, x="total_bill", ax=ax)

# use matplotlib notation to set a title
ax.set_title('Total Bill Histogram')

# use matplotlib to show the figure
plt.show()

3.4.1.2 Density Plot (Kernel Density Estimation)

Density plots are another way to visualize a univariate distribution (Figure 3.13). In essence, they are created by drawing a normal distribution centered at each data point, then smoothing out the overlapping plots so that the area under the curve is 1.
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Figure 3.13 Seaborn kde plot


den, ax = plt.subplots()

sns.kdeplot(data=tips, x="total_bill", ax=ax)

ax.set_title('Total Bill Density')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Unit Probability')

plt.show()

3.4.1.3 Rug Plot

Rug plots are a one-dimensional representation of a variable’s distribution. They are typically used with other plots to enhance a visualization. Figure 3.14 shows a histogram overlaid with a density plot and a rug plot on the bottom.
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Figure 3.14 Seaborn rug plot with histogram



rug, ax = plt.subplots()

# plot 2 things into the axes we created
sns.rugplot(data=tips, x="total_bill", ax=ax)
sns.histplot(data=tips, x="total_bill", ax=ax)

ax.set_title("Rug Plot and Histogram of Total Bill")
ax.set_title("Total Bill")

plt.show()

3.4.1.4 Distribution Plots

The newer sns.displot() function allows us to put together many of the univariate plots together into a single plot. This is the successor to the older sns.distplot() function (note the very subtle difference in spelling).

The sns.displot() function returns a FacetGrid object, not an axes, so the way we have been creating a figure and plotting the axes does not apply to this particular function. The benefit of it returning a more complex object is how it can plot multiple things at the same time. Figure 3.15 shows how we can combine many of the distribution figures into a single figure.
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Figure 3.15 Seaborn distribution plot showing histogram, kde, and rug plots



# the FacetGrid object creates the figure and axes for us
fig = sns.displot(data=tips, x="total_bill", kde=True, rug=True)

fig.set_axis_labels(x_var="Total Bill", y_var="Count")
fig.figure.suptitle('Distribution of Total Bill')

plt.show()

3.4.1.5 Count Plot (Bar Plot)

Bar plots are very similar to histograms, but instead of binning values to produce a distribution, bar plots can be used to count discrete variables. Seaborn calls this a count plot (Figure 3.16).
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Figure 3.16 Seaborn count plot (i.e., bar plot) using the viridis color palette



count, ax = plt.subplots()

# we can use the viridis palette to help distinguish the colors
sns.countplot(data=tips, x='day', palette="viridis", ax=ax)

ax.set_title('Count of days')
ax.set_xlabel('Day of the Week')
ax.set_ylabel('Frequency')

plt.show()


Note

The viridis color palette was designed by Stéfan van der Walt and Nathaniel Smith to be colorblind friendly, and also be distinguishable in greyscale. They presented this color palette at the SciPy 2015 Conference, “A Better Default Colormap for Matplotlib”

https://www.youtube.com/watch?v=xAoljeRJ3lU



3.4.2 Bivariate Data

We will now use the seaborn library to plot two variables.

3.4.2.1 Scatter Plot

There are a few ways to create a scatter plot in seaborn. The main difference is the type of object that gets created, an Axes or FacetGrid (i.e., type of Figure). sns.scatterplot() returns an Axes object (Figure 3.17).
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Figure 3.17 Seaborn scatter plot using sns.scatterplot()



scatter, ax = plt.subplots()

# use fit_reg=False if you do not want the regression line
sns.scatterplot(data=tips, x='total_bill', y='tip', ax=ax)

ax.set_title('Scatter Plot of Total Bill and Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

plt.show()

We can also use sns.regplot() to create a scatter plot and also draw a regression line (Figure 3.18).
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Figure 3.18 Seaborn scatter plot using sns.regplot()



reg, ax = plt.subplots()

# use fit_reg=False if you do not want the regression line
sns.regplot(data=tips, x='total_bill', y='tip', ax=ax)

ax.set_title('Regression Plot of Total Bill and Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

plt.show()

A similar function, sns.lmplot(), can also create scatter plots. Internally, sns.lmplot() calls sns.regplot(), so sns.regplot() is a more general plotting function. The main difference is that sns.regplot() creates an axes object whereas sns.lmplot() creates a figure object (See Section 3.2.2 for the parts of a figure). Figure 3.19 creates a scatter plot with a regression line, but creates the figure object directly, similar to the FacetGrid from sns.displot() in Section 3.4.1.4.
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Figure 3.19 Seaborn scatter plot using sns.lmplot()



# use if you do not want the regression line
fig = sns.lmplot(data=tips, x='total_bill', y='tip')

plt.show()

3.4.2.2 Joint Plot

We can also create a scatter plot that includes a univariate plot on each axis using sns.jointplot() (Figure 3.20). One major difference is that sns.jointplot() does not return axes, so we do not need to create a figure with axes on which to place our plot. Instead, this function creates a JointGrid object. If we need access to the base matplotlib Figure object, we use the .figure attribute.
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Figure 3.20 Seaborn scatter plot using sns.jointplot()



# jointplot creates the figure and axes for us
joint = sns.jointplot(data=tips, x='total_bill', y='tip')

joint.set_axis_labels(xlabel='Total Bill', ylabel='Tip')

# add a title and move the text up so it doesn't clash with histogram
joint.figure.suptitle('Joint Plot of Total Bill and Tip', y=1.03)

plt.show()

3.4.2.3 Hexbin Plot

Scatter plots are great for comparing two variables. However, sometimes there are too many points for a scatter plot to be meaningful. One way to get around this issue is to bin and aggregate nearby points on the plot together. Just as histograms can bin a variable to create a bar, hexbin plots can bin two variables (Figure 3.21). A hexagon is used for this purpose because it is the most efficient shape to cover an arbitrary 2D surface. This is an example of seaborn building on top of matplotlib, as hexbin() is a matplotlib function.
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Figure 3.21 Seaborn hexbin plot using sns.jointplot()



# we can use jointplot with kind="hex" for a hexbin plot
hexbin = sns.jointplot(
  data=tips, x="total_bill", y="tip", kind="hex"
)

hexbin.set_axis_labels(xlabel='Total Bill', ylabel='Tip')
hexbin.figure.suptitle('Hexbin Plot of Total Bill and Tip', y=1.03)

plt.show()

3.4.2.4 2D Density Plot

You can also create a 2D kernel density plot. This kind of process is similar to how sns.kdeplot() works, except it creates a density plot across two variables. The bivariate plot can be shown on its own (Figure 3.22).
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Figure 3.22 Seaborn KDE plot using sns.kdeplot()



kde, ax = plt.subplots()

# shade will fill in the contours
sns.kdeplot(data=tips, x="total_bill", y="tip", shade=True, ax=ax)

ax.set_title('Kernel Density Plot of Total Bill and Tip')
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')

plt.show()

sns.jointplot() will also allow us to create KDE plots (Figure 3.23).
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Figure 3.23 Seaborn KDE plot using sns.jointplot()



kde2d = sns.jointplot(data=tips, x="total_bill", y="tip", kind="kde")

kde2d.set_axis_labels(xlabel='Total Bill', ylabel='Tip')
kde2d.fig.suptitle('2D KDE Plot of Total Bill and Tip', y=1.03)

plt.show()

3.4.2.5 Bar Plot

Bar plots can also be used to show multiple variables. By default, sns.barplot() will calculate a mean (Figure 3.24), but you can pass any function into the estimator parameter. For example, you could pass in the np.mean() function to calculate the mean using the version from the numpy library.
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Figure 3.24 Seaborn bar plot using the np.mean() function



import numpy as np

bar, ax = plt.subplots()

# plot the average total bill for each value of time
# mean is calculated using numpy
sns.barplot(
  data=tips, x="time", y="total_bill", estimator=np.mean, ax=ax
)

ax.set_title('Bar Plot of Average Total Bill for Time of Day')
ax.set_xlabel('Time of Day')
ax.set_ylabel('Average Total Bill')

plt.show()

3.4.2.6 Box Plot

Unlike the previously mentioned plots, a box plot (Figure 3.25) shows multiple statistics: the minimum, first quartile, median, third quartile, maximum, and, if applicable, outliers based on the interquartile range.
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Figure 3.25 Seaborn box plot of total bill by time of day



The y parameter in sns.boxplot() is optional. If it is omitted, the plotting function will create a single box in the plot.

box, ax = plt.subplots()

# the y is optional, but x would have to be a numeric variable
sns.boxplot(data=tips, x='time', y='total_bill', ax=ax)

ax.set_title('Box Plot of Total Bill by Time of Day')
ax.set_xlabel('Time of Day')
ax.set_ylabel('Total Bill')

plt.show()

3.4.2.7 Violin Plot

Box plots are a classical statistical visualization, but they can obscure the underlying distribution of the data. Violin plots (Figure 3.26) can show the same values as a box plot, but plot the “boxes” as a kernel density estimation. This can help retain more visual information about your data since only plotting summary statistics can be misleading, as seen by the Anscombe quartet (Section 3.2.1).
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Figure 3.26 Seaborn violin plot of total bill by time of day



violin, ax = plt.subplots()

sns.violinplot(data=tips, x='time', y='total_bill', ax=ax)

ax.set_title('Violin plot of total bill by time of day')
ax.set_xlabel('Time of day')
ax.set_ylabel('Total Bill')

plt.show()

We can now see how the violin plot is related to the box plot. In Figure 3.27, we will create a single figure with 2 axes (i.e., subplots).
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Figure 3.27 Comparing box plots with violin plots



# create the figure with 2 subplots
box_violin, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)

sns.boxplot(data=tips, x='time', y='total_bill', ax=ax1)
sns.violinplot(data=tips, x='time', y='total_bill', ax=ax2)

# set the titles
ax1.set_title('Box Plot')
ax1.set_xlabel('Time of day')
ax1.set_ylabel('Total Bill')

ax2.set_title('Violin Plot')
ax2.set_xlabel('Time of day')
ax2.set_ylabel('Total Bill')

box_violin.suptitle("Comparison of Box Plot with Violin Plot")

# space out the figure so labels do not overlap
box_violin.set_tight_layout(True)

plt.show()

3.4.2.8 Pairwise Relationships

When you have mostly numeric data, visualizing all of the pairwise relationships can be performed using sns.pairplot(). This function will plot a scatter plot between each pair of variables, and a histogram for the univariate data (Figure 3.28).
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Figure 3.28 Seaborn pair plot



fig = sns.pairplot(data=tips)

fig.figure.suptitle(

  'Pairwise Relationships of the Tips Data', y=1.03
)

plt.show()

One drawback when using sns.pairplot() is that there is redundant information; that is, the top half of the visualization is the same as the bottom half. We can use sns.PairGrid() to manually assign the plots for the top half and bottom half. This plot is shown in Figure 3.29.
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Figure 3.29 Seaborn pair plot with different plots on the upper and lower halves



# create a PairGrid, make the diagonal plots on a different scale
pair_grid = sns.PairGrid(tips, diag_sharey=False)

# set a separate function to plot the upper, bottom, and diagonal
# functions need to return an axes, not a figure

# we can use plt.scatter instead of sns.regplot
pair_grid = pair_grid.map_upper(sns.regplot)
pair_grid = pair_grid.map_lower(sns.kdeplot)
pair_grid = pair_grid.map_diag(sns.histplot)

plt.show()

3.4.3 Multivariate Data

As mentioned in Section 3.3.3, there is no de facto template for plotting multivariate data. Possible ways to include more information are to use color, size, or shape to distinguish data within the plot.

3.4.3.1 Colors

When we are using sns.violinplot(), we can pass the hue parameter to color the plot by sex. We can reduce the redundant information by having each half of the violins represent a different sex, as shown in Figure 3.30. Try the following code with and without the split parameter.
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Figure 3.30 Seaborn violin plot with hue parameter



violin, ax = plt.subplots()

sns.violinplot(
  data=tips,
  x="time",
  y="total_bill",
  hue="smoker", # set color based on smoker variable
  split=True,
  palette="viridis", # palette specifies the colors for hue
  ax=ax,
)

plt.show()

The hue parameter can be passed into various other plotting functions as well. Figure 3.31 shows its use in a sns.lmplot().
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Figure 3.31 Seaborn lmplot plot with hue parameter



# note the use of lmplot instead of regplot to return a figure
scatter = sns.lmplot(
  data=tips,
  x="total_bill",
  y="tip",
  hue="smoker",
  fit_reg=False,
  palette="viridis",
)

plt.show()

We can make our pairwise plots a little more meaningful by passing one of the categorical variables as the hue parameter. Figure 3.32 shows this approach in our sns.pairplot().
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Figure 3.32 Seaborn pair plot with hue parameter



fig = sns.pairplot(
  tips,
  hue="time",
  palette="viridis",
  height=2, # facet height to make the entire figure smaller
)

plt.show()

3.4.3.2 Size and Shape

Working with point sizes can be another means of adding more information to a plot. However, this option should be used sparingly, since the human eye is not very good at comparing areas. Figure 3.33 shows using the hue for color and size for point sizes in the sns.scatterplot() function.


[image: Images]

Figure 3.33 Scatter plot of tip vs total bill, colored by time of day, and sized by table size



fig, ax = plt.subplots()

sns.scatterplot(
  data=tips,
  x="total_bill",
  y="tip",
  hue="time",
  size="size",
  palette="viridis",
  ax=ax,
)

plt.show()

3.4.4 Facets

What if we want to show more variables? Or if we know which plot we want for our visualization, but we want to make multiple plots over a categorical variable? Facets are designed to meet these needs. Instead of individually subsetting data and lay out the axes in a figure (as we did in Figure 3.5), facets in seaborn can handle this work for you.

To use facets, your data needs to be what Hadley Wickham6 calls “Tidy Data”,7 where each row represents an observation in the data, and each column is a variable. More about tidy data is discussed in Chapter 4.

6. Hadley Wickham, PhD: http://hadley.nz

7. Tidy Data paper: http://vita.had.co.nz/papers/tidy-data.pdf

3.4.4.1 One Facet Variable

Figure 3.34 shows a re-creation of the Anscombe quartet data from Figure 3.5 in seaborn. The trick to faceted plots in seaborn is to look for the col or row parameter in the plotting function. Here, we use sns.relplot() to make our faceted scatter plot (the sns. scatterplot() documentation also points to use sns.relplot() for facets).
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Figure 3.34 Seaborn Anscombe plot with facets



anscombe_plot = sns.relplot(
  data=anscombe,
  x="x",
  y="y",
  kind="scatter",
  col="data set",
  col_wrap=2,
  height=2,
  aspect=1.6, # aspect ratio of each facet
)

anscombe_plot.figure.set_tight_layout(True)

plt.show()

The col parameter is the variable that the plot will facet by, and the col_wrap parameter creates a figure that has two columns. If we do not use the col_wrap parameter, all four plots will be plotted in the same row.

3.4.4.2 Two Facet Variables

We can build on this to incorporate two categorical variables into our faceted plot. Additional categorical variables can be passed into the hue, style, etc. parameters.

'''python
colors = {
  "Yes": "#f1a340", # orange
  "No" : "#998ec3", # purple
}
# make the faceted scatter plot
# this is the only part that is needed to draw the figure
facet2 = sns.relplot(
  data=tips,
  x="total_bill",
  y="tip",
  hue="smoker",
  style="sex",
  kind="scatter",
  col="day",
  row="time",
  palette=colors,
  height=1.7, # adjusted to fit figure on page
)

# below is to make the plot pretty
# adjust facet titles
facet2.set_titles
  row_template=" {row_name}",
  col_template=" {col_name}"
)

# adjust the legend to not have it overlap the figure
sns.move_legend(
  facet2,
  loc="lower center",
  bbox_to_anchor=(0.5, 1),
  ncol=2,   #number legend columns 
  title=None,   #legend title
  frameon=False, #remove frame (i.e., border box) around legend
)

facet2.figure.set_tight_layout(True)

plt.show()'''

3.4.4.3 Manually Create Facets

Many of the plots we created in seaborn are axes-level functions. What this means is that not every plotting function will have col and col_wrap parameters for faceting. Instead, we must create a FacetGrid that knows which variable to facet on, and then supply the individual plot code for each facet. Figure 3.36 shows our manually created facet plot.
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Figure 3.35 Seaborn tips scatter plot with hue, style, and facets
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Figure 3.36 Seaborn plot with manually created facets




Danger

If you can, use one of the seaborn plotting functions that returns a figure object with row and col parameters to facet (e.g., sns.relplot() or sns.catplot()). You should opt to use those functions instead of manually creating a FacetGrid object. Many of the seaborn plotting functions will point to a different seaborn function if you want to facet.



# create the FacetGrid
facet = sns.FacetGrid(tips, col='time')

# for each value in time, plot a histogram of total bill
# you pass in parameters as if you were passing them directly
# into sns.histplot()
facet.map(sns.histplot, 'total_bill')
plt.show()

The individual facets need not be univariate plots, as seen in Figure 3.37.
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Figure 3.37 Seaborn plot with manually created facets that contain multiple variables



facet = sns.FacetGrid(
tips, col='day', hue='sex', palette="viridis"
)
facet.map(plt.scatter, 'total_bill', 'tip')
facet.add_legend()
plt.show()

Another thing you can do with facets is to have one variable be faceted on the x-axis, and another variable faceted on the y-axis. We accomplish this by passing a row parameter. The result is shown in Figure 3.38.
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Figure 3.38 Seaborn plot with manually created facets with two variables



facet = sns.FacetGrid(
  tips, col='time', row='smoker', hue='sex', palette="viridis"
)
facet.map(plt.scatter, 'total_bill', 'tip')
plt.show()

If you do not want all of the hue elements to overlap (i.e., you want this behavior in scatter plots, but not violin plots), you can use the sns.catplot() function. The result is shown in Figure 3.39.
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Figure 3.39 Seaborn plot with manually created facets with two non-overlapping variables



facet = sns.catplot(
    x="day",
    y="total_bill",
    hue="sex",
    data=tips,
    row="smoker",
    col="time",
    kind="violin",
)
plt.show()

3.4.5 Seaborn Styles and Themes

The seaborn plots shown in this chapter have all used the default plot styles. We can change the plot style with the sns.set_style function. Typically, this function is run just once at the top of your code; all subsequent plots will use the same style set.

3.4.5.1 Styles

The styles that come with seaborn are darkgrid, whitegrid, dark, white, and ticks. Figure 3.40 shows a base plot, and Figure 3.41 shows a plot with the whitegrid style.
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Figure 3.40 Baseline violin plot with default seaborn style



The with block allow us to temporarily use a style without setting it as a default for all subsequent plots. If you want to set the style as a default you would use sns.set_style("whitegrid") instead of the with block.

# initial plot for comparison
fig, ax = plt.subplots()
sns.violinplot(
  data=tips, x="time", y="total_bill", hue="sex", split=True, ax=ax
)

plt.show()

# Use this to set a global default style
# sns.set_style("whitegrid")

# temporarily set style and plot
# remove the with line + indentation if using sns.set_style()
with sns.axes_style("darkgrid"):

  fig, ax = plt.subplots()
  sns.violinplot(
    data=tips, x="time", y="total_bill", hue="sex", split=True, ax=ax
  )

plt.show()

The following code shows what all the styles look like (Figure 3.42).
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Figure 3.41 Violin plot with "darkgrid" seaborn style
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Figure 3.42 All seaborn styles



seaborn_styles = ["darkgrid", "whitegrid", "dark", "white", "ticks"]

fig = plt.figure()
for idx, style in enumerate(seaborn_styles):
  plot_position = idx + 1
  with sns.axes_style(style):
    ax = fig.add_subplot(2, 3, plot_position)
    violin = sns.violinplot(
      data=tips, x="time", y="total_bill", ax=ax
    )
    violin.set_title(style)
fig.set_tight_layout(True)
plt.show()

3.4.5.2 Plotting Contexts

The seaborn library comes with a set of contexts that quickly tweak various parts of the figure (text size, line width, axis tick size, etc.) for different “contexts”. This chapter uses the "paper" context since it is made for printed text, but the default context is "notebook". Below you will see the various parameters set for each context, and Figure 3.43 shows a quick preview of each context.


[image: Images]

Figure 3.43 Example of seaborn figure contexts



contexts = pd.DataFrame(
  {
    "paper": sns.plotting_context("paper"),
    "notebook": sns.plotting_context("notebook"),
    "talk": sns.plotting_context("talk"),
    "poster": sns.plotting_context("poster"),
  }
)
print(contexts)

                     paper notebook    talk poster
axes.linewidth         1.0     1.25   1.875    2.5
grid.linewidth         0.8     1.00   1.500    2.0
lines.linewidth        1.2     1.50   2.250    3.0
lines.markersize       4.8     6.00   9.000   12.0
patch.linewidth        0.8     1.00   1.500    2.0
xtick.major.width      1.0     1.25   1.875    2.5
ytick.major.width      1.0     1.25   1.875    2.5
xtick.minor.width      0.8     1.00   1.500    2.0
ytick.minor.width      0.8     1.00   1.500    2.0
xtick.major.size       4.8     6.00   9.000   12.0
ytick.major.size       4.8     6.00   9.000   12.0
xtick.minor.size       3.2     4.00   6.000    8.0
ytick.minor.size       3.2     4.00   6.000    8.0
font.size              9.6    12.00  18.000   24.0
axes.labelsize         9.6    12.00  18.000   24.0
axes.titlesize         9.6    12.00  18.000   24.0
xtick.labelsize        8.8    11.00  16.500   22.0
ytick.labelsize        8.8    11.00  16.500   22.0
legend.fontsize        8.8    11.00  16.500   22.0
legend.title_fontsize  9.6    12.00  18.000   24.0

context_styles = contexts.columns

fig = plt.figure()
for idx, context in enumerate(context_styles):
  plot_position = idx + 1
  with sns.plotting_context(context):
    ax = fig.add_subplot(2, 2, plot_position)
    violin = sns.violinplot(
      data=tips, x="time", y="total_bill", ax=ax
    )
    violin.set_title(context)
fig.set_tight_layout(True)
plt.show()

3.4.6 How To Go Through Seaborn Documentation

Throughout this chapter discussing seaborn plotting, we’ve talked about different plotting objects that come out of the matplotlib library, mainly the Axes and Figure objects. For all plotting libraries that build on top of matplotlib, it’s important to know how to read aspects of the documentation, so you can customize your plots to your liking.

Let’s use the violin plot (Figure 3.27) and pair plot (Figure 3.28) in Section 3.4.2.7 and Section 3.4.2.8 as examples of how to walk through object documentation.

3.4.6.1 Matplotlib Axes Objects

A snippet of the code for Figure 3.27 is below:

box_violin, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)

sns.boxplot(data=tips, x='time', y='total_bill', ax=ax1)
sns.violinplot(data=tips, x='time', y='total_bill', ax=ax2)

ax1.set_title('Box Plot')
ax1.set_xlabel('Time of day')
ax1.set_ylabel('Total Bill')

ax2.set_title('Violin Plot')
ax2.set_xlabel('Time of day')
ax2.set_ylabel('Total Bill')

box_violin.suptitle("Comparison of Box Plot with Violin Plot")

box_violin.set_tight_layout(True)
plt.show()

In this particular example, if we look up the documentation for the sns.violinplot(), we will see that the function returns a matplotlib Axes object.

Returns ax : matplotlib Axes

Returns the Axes object with the plot drawn onto it.

We can also confirm that the ax2 object we created is an Axes object:

print(type(ax2))

<class 'matplotlib.axes._subplots.AxesSubplot'>

Since the Axes object is from matplotlib, if we want to make additional tweaks to the figure outside of the sns.violinplot() function, we would need to look into the matplotlib.axes documentation.8 This is where you would find the documentation for the .set_title() method that was used to create the figure title.

8. Axes API docs: https://matplotlib.org/stable/api/axes_api.xhtml#module-matplotlib.axes

3.4.6.2 Matplotlib Figure Objects

Using the same reproduced code for Figure 3.27 above, we can see the type() of the box_violin object we created and go to the Figure documentation.9

9. Figure API docs: https://matplotlib.org/stable/api/figure_api.xhtml#module-matplotlib.figure

print(type(box_violin))

<class 'matplotlib.figure.Figure'>

This is where we can find the .suptitle() method used to add the overall title to the figure.

3.4.6.3 Custom Seaborn Objects

The code for Figure 3.28 is reproduced below:

fig = sns.pairplot(data=tips)
fig.figure.suptitle(
  'Pairwise Relationships of the Tips Data', y=1.03
)
plt.show()

This is an example of an object specific to seaborn, the PairGrid object.10

10. seaborn.PairGrid docs: https://seaborn.pydata.org/generated/seaborn.PairGrid.xhtml

print(type(fig))

<class 'seaborn.axisgrid.PairGrid'>

If we scroll down to the bottom of the documentation page, we can see all the attributes and methods for the PairGrid object. However, we know that .suptitle() is a matplotlib.Figure method. From the API documentation at the bottom of the page, we can see how we can access the underlying Figure object by using the .figure attribute. This is why we needed to write .figure.suptitle() to take the sns.FacetGrid object, access the matplotlib.Figure object, then the .subtitle() method.

3.4.7 Next-Generation Seaborn Interface

There is a new seaborn interface in the works.11 However, at the time of writing, the next-gen interface is not official yet. When the official change occurs and the API is stable, the book’s website will provide the updated code for the seaborn section.12

11. Next-generation seaborn interface: https://seaborn.pydata.org/nextgen/

12. Pandas for Everyone GitHub Page: https://github.com/chendaniely/pandas_for_everyone/

3.5 Pandas Plotting Method

Pandas objects also come equipped with their own plotting functions. Just as in seaborn, the plotting functions built into Pandas are just wrappers around matplotlib with preset values. In general, plotting using Pandas follows the DataFrame.plot.<PLOT_TYPE> or Series.plot.<PLOT_TYPE> methods.

3.5.1 Histogram

Histograms can be created using the Series.plot.hist() (Figure 3.44) or DataFrame.plot.hist() (Figure 3.45) function.
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Figure 3.44 Histogram of a Pandas Series



# on a series
fig, ax = plt.subplots()
tips['total_bill'].plot.hist(ax=ax)
plt.show()

# on a dataframe
# set alpha channel transparency to see through the overlapping bars
fig, ax = plt.subplots()
tips[['total_bill', 'tip']].plot.hist(alpha=0.5, bins=20, ax=ax)
plt.show()

3.5.2 Density Plot

The kernel density estimation (density) plot can be created with the DataFrame.plot. kde() function (Figure 3.46).
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Figure 3.45 Histogram of a Pandas DataFrame



[image: Images]

Figure 3.46 Pandas KDE plot



fig, ax = plt.subplots()
tips['tip'].plot.kde(ax=ax)
plt.show()

3.5.3 Scatter Plot

Scatter plots are created by using the DataFrame.plot.scatter() function (Figure 3.47).
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Figure 3.47 Pandas scatter plot



fig, ax = plt.subplots()
tips.plot.scatter(x='total_bill', y='tip', ax=ax)
plt.show()

3.5.4 Hexbin Plot

Hexbin plots are created using the Dataframe.plt.hexbin() function (Figure 3.48).
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Figure 3.48 Pandas hexbin plot



fig, ax = plt.subplots()
tips.plot.hexbin(x='total_bill', y='tip', ax=ax)
plt.show()

Grid size can be adjusted with the gridsize parameter (Figure 3.49).
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Figure 3.49 Pandas hexbin plot with modified grid size



fig, ax = plt.subplots()
tips.plot.hexbin(x='total_bill', y='tip', gridsize =10, ax=ax)
plt.show()

3.5.5 Box Plot

Box plots are created with the DataFrame.plot.box() function (Figure 3.50).
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Figure 3.50 Pandas box plot



fig, ax = plt.subplots()
ax = tips.plot.box(ax=ax)
plt.show()

Conclusion

Data visualization is an integral part of exploratory data analysis and data presentation. This chapter provided an introduction to the various ways to explore and present your data. As we continue through the book, we will learn about more complex visualizations.

There are myriad plotting and visualization resources available on the Internet. The seaborn documentation, Pandas visualization documentation, and matplotlib documentation all provide ways to further tweak your plots (e.g., colors, line thickness, legend placement, figure annotations). Other resources include colorbrewer to help pick good color schemes. The plotting libraries mentioned in this chapter also have various color schemes that can be used to highlight the content of your visualizations.



4

Tidy Data

Hadley Wickham, PhD,1 one of the more prominent members of the R community, introduced the concept of tidy data in a Journal of Statistical Software paper.2 Tidy data is a framework to structure data sets so they can be easily analyzed and visualized. It can be thought of as a goal one should aim for when cleaning data. Once you understand what tidy data is, that knowledge will make your data analysis, visualization, and collection much easier.

1. Hadley Wickham, PhD: http://hadley.nz

2. Tidy Data paper: http://vita.had.co.nz/papers/tidy-data.pdf

What is tidy data? Hadley Wickham’s paper defines it as meeting the following criteria: (1) Each row is an observation, (2) Each column is a variable, and (3) Each type of observational unit forms a table.

The newer definition from the R4DS book3 focuses on an individual data set (i.e., table):

3. R For Data Science Book: https://r4ds.had.co.nz/tidy-data.xhtml

1. Each variable must have its own column.

2. Each observation must have its own row.

3. Each value must have its own cell.

This chapter goes through the various ways to tidy data using examples from Wickham’s paper.

Learning Objectives

The concept map for this chapter can be found in Figure A-4.

[image: Images] Identify the components of tidy data

[image: Images] Identify common data errors

[image: Images] Use functions and methods to process and tidy data

Note About This Chapter

Data used in this chapter will have NaN missing values when they are loaded into Pandas (Chapter 9). In the raw CSV files, they will appear as empty values. I typically try to avoid forward referencing in the book, but I felt that the concept of tidy data warranted a much earlier place in the book because it is so fundamental to how we should be thinking about data technically (as opposed to ethically), that the chapter was moved toward the front of the book without having to cover more detailed data processing steps first. I could have changed the data sets such that there were no missing values, but opted not to do so because (1) it would no longer follow the data used in Wickam’s “Tidy Data” paper, and (2) it would be a less realistic data set.

4.1 Columns Contain Values, Not Variables

Data can have columns that contain values instead of variables. This is usually a convenient format for data collection and presentation.

4.1.1 Keep One Column Fixed

We’ll use data on income and religion in the United States from the Pew Research Center to illustrate how to work with columns that contain values, rather than variables.

import pandas as pd
pew = pd.read_csv('data/pew.csv')

When we look at this data set, we can see that not every column is a variable. The values that relate to income are spread across multiple columns. The format shown is a great choice when presenting data in a table, but for data analytics, the table should be reshaped so that we have religion, income, and count variables.

# show only the first few columns
print(pew.iloc[:,0:5])

                 religion  <$10k  $10-20k $20-30k  $30-40k
0                Agnostic     27       34      60      81
1                 Atheist     12       27      37      52
2                Buddhist     27       21      30      34
3                Catholic    418      617     732     670
4      Don’t know/refused     15       14      15      11
..                    ...    ...      ...     ...     ...
13               Orthodox     13       17      23      32
14        Other Christian      9        7      11      13
15           Other Faiths     20       33      40      46
16  Other World Religions      5        2       3       4
17           Unaffiliated    217      299     374     365

[18 rows x 5 columns]

This view of the data is also known as “wide” data. To turn it into the “long” tidy data format, we will have to unpivot/melt/gather (depending on which statistical programming language we use) our dataframe.


Note

I usually use the terminology from the R world of using “pivot” to refer to going from wide data to long data and vice versa. I usually will specify the direction with “pivot longer” to go from wide data to long data, and “pivot wider” to go from long data to wide data.

In this chapter “pivot longer” will refer to the dataframe .melt() method, and “pivot wider” will refer to the dataframe .pivot() method.



Pandas DataFrames have a method called .melt() that will reshape the dataframe into a tidy format and it takes a few parameters:

[image: Images] id_vars is a container (list, tuple, ndarray) that represents the variables that will remain as is.

[image: Images] value_vars identifies the columns you want to melt down (or unpivot). By default, it will melt all the columns not specified in the id_vars parameter.

[image: Images] var_name is a string for the new column name when the value_vars is melted down. By default, it will be called variable.

[image: Images] value_name is a string for the new column name that represents the values for the var_name. By default, it will be called value.

# we do not need to specify a value_vars since we want to pivot
# all the columns except for the 'religion' column
pew_long = pew.melt(id_vars='religion')

print(pew_long)

                  religion            variable   value
0                 Agnostic               <$10k    27
1                  Atheist               <$10k    12
2                 Buddhist               <$10k    27
3                 Catholic               <$10k   418
4       Don't know/refused               <$10k    15
..                     ...                 ...   ...
175               Orthodox  Don't know/refused    73
176        Other Christian  Don't know/refused    18
177           Other Faiths  Don't know/refused    71
178  Other World Religions  Don't know/refused     8
179           Unaffiliated  Don't know/refused   597

[180 rows x 3 columns]


Note

The .melt() method also exists as a pandas function, pd.melt()

The below two lines of code are equivalent:

# melt method
pew_long = pew.melt(id_vars='religion')

# melt function
pew_long = pd.melt(pew, id_vars='religion')

Internally, the .melt() method redirects the function call to the Pandas pd.melt() function. The .melt() method notation is there to make the Pandas API more consistent, and also allows us to method-chain (Appendix U).



We can change the defaults so that the melted/unpivoted columns are named.

pew_long = pew.melt(
  id_vars ="religion", var_name="income", value_name ="count"
)

print(pew_long)

                  religion             income  count
0                 Agnostic              <$10k     27
1                  Atheist              <$10k     12
2                 Buddhist              <$10k     27
3                 Catholic              <$10k    418
4       Don't know/refused              <$10k     15
..                     ...                 ...   ...
175               Orthodox  Don't know/refused    73
176        Other Christian  Don't know/refused    18
177           Other Faiths  Don't know/refused    71
178  Other World Religions  Don't know/refused     8
179           Unaffiliated  Don't know/refused   597

[180 rows x 3 columns]

4.1.2 Keep Multiple Columns Fixed

Not every data set will have one column to hold still while you unpivot the rest of the columns. As an example, consider the Billboard data set.

billboard = pd.read_csv('data/billboard.csv')

# look at the first few rows and columns
print(billboard.iloc[0:5, 0:16])

   year        artist                    track  time  date.entered  \
0  2000         2 Pac  Baby Don't Cry (Keep...  4:22    2000-02-26
1  2000       2Ge+her  The Hardest Part Of ...  3:15    2000-09-02
2  2000  3 Doors Down               Kryptonite  3:53    2000-04-08
3  2000  3 Doors Down                    Loser  4:24    2000-10-21
4  2000      504 Boyz            Wobble Wobble  3:35    2000-04-15

  wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8   wk9  wk10  wk11
0  87  82.0  72.0  77.0  87.0  94.0  99.0   NaN   NaN   NaN   NaN
1  91  87.0  92.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
2  81  70.0  68.0  67.0  66.0  57.0  54.0  53.0  51.0  51.0  51.0
3  76  76.0  72.0  69.0  67.0  65.0  55.0  59.0  62.0  61.0  61.0
4  57  34.0  25.0  17.0  17.0  31.0  36.0  49.0  53.0  57.0  64.0

You can see here that each week has its own column. Again, there is nothing wrong with this form of data. It may be easy to enter the data in this form, and it is much quicker to understand what it means when the data is presented in a table. However, there may be a time when you will need to melt the data. For example, if you wanted to create a faceted plot of the weekly ratings, the facet variable would need to be a column in the dataframe.

# use a list to reference more than 1 variable
billboard_long = billboard.melt(
  id_vars =["year", "artist", "track", "time", "date.entered"],
  var_name ="week",
  value_name ="rating",
)

print(billboard_long)

       year            artist                   track  time  \
0      2000             2 Pac  Baby Don't Cry (Keep... 4:22
1      2000           2Ge+her  The Hardest Part Of ... 3:15
2      2000      3 Doors Down               Kryptonite 3:53
3      2000      3 Doors Down                    Loser 4:24
4      2000          504 Boyz            Wobble Wobble 3:35
...     ...               ...                      ... ...
24087  2000       Yankee Grey     Another Nine Minutes 3:10
24088  2000  Yearwood, Trisha          Real Live Woman 3:55
24089  2000   Ying Yang Twins  Whistle While You Tw... 4:19
24090  2000     Zombie Nation            Kernkraft 400 3:30
24091  2000   matchbox twenty                     Bent 4:12

     date.entered  week  rating
0      2000-02-26   wk1    87.0
1      2000-09-02   wk1    91.0
2      2000-04-08   wk1    81.0
3      2000-10-21   wk1    76.0
4      2000-04-15   wk1    57.0
...           ...   ...     ...
24087  2000-04-29  wk76     NaN
24088  2000-04-01  wk76     NaN
24089  2000-03-18  wk76     NaN
24090  2000-09-02  wk76     NaN
24091  2000-04-29  wk76     NaN

[24092 rows x 7 columns]

4.2 Columns Contain Multiple Variables

Sometimes columns in a data set may represent multiple variables. This format is commonly seen when working with health data, for example. To illustrate this situation, let’s look at the Ebola data set.

ebola = pd.read_csv('data/country_timeseries.csv')
print(ebola.columns)

Index(['Date', 'Day', 'Cases_Guinea', 'Cases_Liberia',
       'Cases_SierraLeone', 'Cases_Nigeria', 'Cases_Senegal',
       'Cases_UnitedStates', 'Cases_Spain', 'Cases_Mali',
       'Deaths_Guinea', 'Deaths_Liberia', 'Deaths_SierraLeone',
       'Deaths_Nigeria', 'Deaths_Senegal', 'Deaths_UnitedStates',
       'Deaths_Spain', 'Deaths_Mali'],
      dtype='object')

# print select rows and columns
print(ebola.iloc[:5, [ 0, 1, 2,10]])

         Date  Day  Cases_Guinea  Deaths_Guinea
0    1/5/2015  289        2776.0         1786.0
1    1/4/2015  288        2775.0         1781.0
2    1/3/2015  287        2769.0         1767.0
3    1/2/2015  286           NaN            NaN
4  12/31/2014  284        2730.0         1739.0

The column names Cases_Guinea and Deaths_Guinea actually contain two variables. The individual status (cases and deaths, respectively) as well as the country name, Guinea. The data is also arranged in a wide format that needs to be reshaped (with the .melt() method).

First, let’s fix the problem we know how to fix, by melting the data into long format.

ebola_long = ebola.melt(id_vars=['Date', 'Day'])

print(ebola_long)

           Date  Day       variable   value
0      1/5/2015  289  Cases_Guinea   2776.0
1      1/4/2015  288  Cases_Guinea   2775.0
2      1/3/2015  287  Cases_Guinea   2769.0
3      1/2/2015  286  Cases_Guinea      NaN
4    12/31/2014  284  Cases_Guinea   2730.0
...         ...  ...           ...      ...

1947  3/27/2014    5  Deaths_Mali    NaN
1948  3/26/2014    4  Deaths_Mali    NaN
1949  3/25/2014    3  Deaths_Mali    NaN
1950  3/24/2014    2  Deaths_Mali    NaN
1951  3/22/2014    0  Deaths_Mali    NaN

[1952 rows x 4 columns]

Conceptually, the column of interest can be split based on the underscore in the column name, _. The first part will be the new status column, and the second part will be the new country column. This will require some string parsing and splitting in Python (more on this in Chapter 11). In Python, a string is an object, similar to how Pandas has Series and DataFrame objects. Chapter 2 showed how Series can have methods such as .mean(), and DataFrames can have methods such as .to_csv(). Strings have methods as well. In this case, we will use the .split() method that takes a string and “splits” it up based on a given delimiter. By default, .split() will split the string based on a space, but we can pass in the underscore, _, in our example. To get access to the string methods, we need to use the .str. attribute. .str. is a special type of attribute that Pandas calls an “accessor” because it can “access” string methods (see Chapter 11 for more on strings). Access to the Python string methods and allow us to work across the entire column. This will be the key to parting out the multiple bits of information stored in each value.

4.2.1 Split and Add Columns Individually

We can use the .str accessor to make a call to the .split() method and pass in the _ understore.

# get the variable column
# access the string methods
# and split the column based on a delimiter
variable_split = ebola_long.variable.str.split('_')

print(variable_split[:5])

0    [Cases, Guinea]
1    [Cases, Guinea]
2    [Cases, Guinea]
3    [Cases, Guinea]
4    [Cases, Guinea]
Name: variable, dtype: object

After we split on the underscore, the values are returned in a list. We can tell it’s a list by:

1. Knowing about the .split() method on base Python string objects4

2. Visually seeing the square brackets in the output, [ ]

3. Getting the type() of one of the items in the Series

4. String .split() documentation: https://docs.python.org/3/library/stdtypes.xhtml#str.split

# the entire container
print(type(variable_split))

<class 'pandas.core.series.Series'>

# the first element in the container
print(type(variable_split[0]))

<class 'list'>

Now that the column has been split into various pieces, the next step is to assign those pieces to a new column. First, however, we need to extract all the 0-index elements for the status column and the 1-index elements for the country column. To do so, we need to access the string methods again, and then use the .get() method to “get” the index we want for each row.

status_values = variable_split.str.get(0)
country_values = variable_split.str.get(1)

print(status_values)

0        Cases
1        Cases
2        Cases
3        Cases
4        Cases
         ...
1947    Deaths
1948    Deaths
1949    Deaths
1950    Deaths
1951    Deaths
Name: variable, Length: 1952, dtype: object

Now that we have the vectors we want, we can add them to our dataframe.

ebola_long['status'] = status_values
ebola_long['country'] = country_values

print(ebola_long)

           Date  Day       variable   value   status   country
0      1/5/2015  289   Cases_Guinea  2776.0    Cases    Guinea
1      1/4/2015  288   Cases_Guinea  2775.0    Cases    Guinea
2      1/3/2015  287   Cases_Guinea  2769.0    Cases    Guinea
3      1/2/2015  286   Cases_Guinea     NaN    Cases    Guinea
4    12/31/2014  284   Cases_Guinea  2730.0    Cases    Guinea
...         ...  ...            ...     ...      ...       ...
1947  3/27/2014    5    Deaths_Mali     NaN   Deaths      Mali
1948  3/26/2014    4    Deaths_Mali     NaN   Deaths      Mali
1949  3/25/2014    3    Deaths_Mali     NaN   Deaths      Mali
1950  3/24/2014    2    Deaths_Mali     NaN   Deaths      Mali
1951  3/22/2014    0    Deaths_Mali     NaN   Deaths      Mali

[1952 rows x 6 columns]

4.2.2 Split and Combine in a Single Step

We can actually do the above steps in a single step. If we look at the .str.split() method documentation (you can find this by looking by going to the Pandas API documentation > Series > String Handling (.str.) > .split() method5), there is a parameter named expand that defaults to False, but when we set it to True, it will return a DataFrame where each result of the split is in a separate column, instead of a Series of list containers.

5. Series.str.split() method documentation: https://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.xhtml#pandas.Series.str.split

# reset our ebola_long data
ebola_long = ebola.melt(id_vars =['Date', 'Day'])

# split the column by _ into a dataframe using expand
variable_split = ebola_long.variable.str.split('_', expand=True)

print(variable_split)

           0       1
0      Cases  Guinea
1      Cases  Guinea
2      Cases  Guinea
3      Cases  Guinea
4      Cases  Guinea
...      ...     ...
1947  Deaths    Mali
1948  Deaths    Mali
1949  Deaths    Mali
1950  Deaths    Mali
1951  Deaths    Mali

[1952 rows x 2 columns]

From here, we can actually use the Python and Pandas multiple assignment feature (Appendix Q), to directly assign the newly split columns into the original DataFrame. Since our output variable_split returned a DataFrame with two columns, we can assign two new columns to our ebola_long DataFrame.

ebola_long[['status', 'country']] = variable_split

print(ebola_long)

           Date  Day      variable   value   status country
0      1/5/2015  289  Cases_Guinea  2776.0    Cases  Guinea
1      1/4/2015  288  Cases_Guinea  2775.0    Cases  Guinea
2      1/3/2015  287  Cases_Guinea  2769.0    Cases  Guinea
3      1/2/2015  286  Cases_Guinea     NaN    Cases  Guinea
4    12/31/2014  284  Cases_Guinea   2730.0   Cases  Guinea
...         ...  ...           ...      ...     ...     ...
1947  3/27/2014    5   Deaths_Mali      NaN  Deaths    Mali
1948  3/26/2014    4   Deaths_Mali      NaN  Deaths    Mali
1949  3/25/2014    3   Deaths_Mali      NaN  Deaths    Mali
1950  3/24/2014    2   Deaths_Mali      NaN  Deaths    Mali
1951  3/22/2014    0   Deaths_Mali      NaN  Deaths    Mali

[1952 rows x 6 columns]

You can also opt to do this as a concatenation (pd.concat()) function call as well (Chapter 6).

4.3 Variables in Both Rows and Columns

At times, data will be formatted so that variables are in both rows and columns – that is, in some combination of the formats described in previous sections of this chapter. Most of the methods needed to tidy up such data have already been presented (.melt() and some string parsing with the .str. accessor attribute). What is left to show is what happens if a column of data actually holds two variables instead of one variable. In this case, we will have to “pivot” the variable into separate columns, i.e., go from long data to wide data.

weather = pd.read_csv('data/weather.csv')
print(weather.iloc[:5, :11])

        id  year  month element   d1    d2    d3    d4    d5   d6   d7
0  MX17004  2010      1    tmax  NaN   NaN   NaN   NaN   NaN  NaN  NaN
1  MX17004  2010      1    tmin  NaN   NaN   NaN   NaN   NaN  NaN  NaN
2  MX17004  2010      2    tmax  NaN  27.3  24.1   NaN   NaN  NaN  NaN
3  MX17004  2010      2    tmin  NaN  14.4  14.4   NaN   NaN  NaN  NaN
4  MX17004  2010      3    tmax  NaN   NaN   NaN   NaN  32.1  NaN  NaN

The weather data include minimum (tmin) and maximum (tmax) temperatures recorded for each day (d1, d2, …, d31) of the month (month). The element column contains variables that need to be pivoted wider to become new columns, and the day variables need to be melted into row values.

Again, there is nothing wrong with the data in the current format. It is simply not in a shape amenable to analysis, although this kind of formatting can be helpful when presenting data in reports. Let’s first fix the day values.

weather_melt = weather.melt(
  id_vars=["id", "year", "month", "element"],
  var_name="day",
  value_name="temp",
)

print(weather_melt)


          id  year  month element  day  temp
0    MX17004  2010      1    tmax   d1   NaN
1    MX17004  2010      1    tmin   d1   NaN
2    MX17004  2010      2    tmax   d1   NaN
3    MX17004  2010      2    tmin   d1   NaN
4    MX17004  2010      3    tmax   d1   NaN
..       ...   ...    ...     ...   ...  ...
677  MX17004  2010     10    tmin   d31  NaN
678  MX17004  2010     11    tmax   d31  NaN
679  MX17004  2010     11    tmin   d31  NaN
680  MX17004  2010     12    tmax   d31  NaN
681  MX17004  2010     12    tmin   d31  NaN

[682 rows x 6 columns]

Next, we need to pivot up the variables stored in the element column.

weather_tidy = weather_melt.pivot_table(
    index=['id', 'year', 'month', 'day'],
    columns='element',
    values='temp'
)

print(weather_tidy)

element                 tmax  tmin
id      year month day
MX17004 2010 1     d30  27.8  14.5
             2     d11  29.7  13.4
                    d2  27.3  14.4
                   d23  29.9  10.7
                    d3  24.1  14.4
...                      ...   ...
            11     d27  27.7  14.2
                   d26  28.1  12.1
                    d4  27.2  12.0
            12      d1  29.9  13.8
                    d6  27.8  10.5

[33 rows x 2 columns]

Looking at the pivoted table, we notice that each value in the element column is now a separate column. We can leave this table in its current state, but we can also flatten the hierarchical columns.

weather_tidy_flat = weather_tidy.reset_index()
print(weather_tidy_flat)

element       id  year  month  day  tmax  tmin
0        MX17004  2010      1  d30  27.8  14.5
1        MX17004  2010      2  d11  29.7  13.4
2        MX17004  2010      2   d2  27.3  14.4
3        MX17004  2010      2  d23  29.9  10.7
4        MX17004  2010      2   d3  24.1  14.4
..           ...   ...    ...  ...   ...   ...
28       MX17004  2010      11 d27  27.7  14.2
29       MX17004  2010      11 d26  28.1  12.1
30       MX17004  2010      11  d4  27.2  12.0
31       MX17004  2010      12  d1  29.9  13.8
32       MX17004  2010      12  d6  27.8  10.5

[33 rows x 6 columns]

Likewise, we can apply these methods without the intermediate dataframe:


weather_tidy = (
  weather_melt
  .pivot_table(
    index=['id', 'year', 'month', 'day'],
    columns='element',
    values='temp')
  .reset_index()
)

print(weather_tidy)

element       id  year  month  day  tmax  tmin
0        MX17004  2010      1  d30  27.8  14.5
1        MX17004  2010      2  d11  29.7  13.4
2        MX17004  2010      2   d2  27.3  14.4
3        MX17004  2010      2  d23  29.9  10.7
4        MX17004  2010      2   d3  24.1  14.4
..           ...   ...    ...  ...   ...   ...
28       MX17004  2010      11 d27  27.7  14.2
29       MX17004  2010      11 d26  28.1  12.1
30       MX17004  2010      11  d4  27.2  12.0
31       MX17004  2010      12  d1  29.9  13.8
32       MX17004  2010      12  d6  27.8  10.5

[33 rows x 6 columns]

Conclusion

This chapter explored how we can reshape data into a format that is conducive to data analysis, visualization, and collection. We applied the concepts in Hadley Wickham’s “Tidy Data” paper to show the various functions and methods to reshape our data. This is an important skill because some functions need data to be organized into a certain shape, tidy or not, to work. Knowing how to reshape your data is an important skill for both the data scientist and the analyst.
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Apply Functions

Learning about .apply() is fundamental in the data cleaning process. It also encapsulates key concepts in programming, mainly writing functions. The .apply() method takes a function and applies it (i.e., runs it) across each row or column of a DataFrame without having you write the code for each element separately.

If you’ve programmed before, then the concept of an apply should be familiar. It is similar to writing a for loop across each row or column and calling the function, or making a map() call to a function. In general, this is the preferred way to apply functions across dataframes, because it typically is much faster than writing a for loop in Python.

If you haven’t programmed before, then prepare to see how we can easily incorporate custom calculations that can be easily repeated across our data.

Learning Objectives

The concept map for this chapter can be found in Figure A-1.

[image: Images] Create and use functions

[image: Images] Use the .apply() method to iteratively perform a calculation across Series and DataFrames

[image: Images] Identify what parts of a Series and DataFrame are passed into .apply()

[image: Images] Create vectorized functions using Python decorators

Note About This Chapter

This chapter was also moved up from a later chapter for the second edition. This is one of the few parts of the book that relies on a completely toy example to simplify what is going on. Later on, we will be able to build on the skills taught in this chapter.

5.1 Primer on Functions

Functions are core elements of using the .apply() method. There’s a lot more information about functions in Appendix O, but here’s a quick introduction.

Functions are a way to group and reuse Python code. If you are ever in a situation where you are copying/pasting code and changing a few parts of the code, then chances are, the copied code can be written into a function. To create a function, we need to define it (with the def keyword). The body of a function is indented.

The PEP8 Style Guide for Python Code says to use four spaces for an indentation. This book uses two spaces for an indentation because of horizontal space limitations, but I am a new convert to using tabs for indentation because it creates more accessible code and is friendlier for people using Braille readers.1

The basic function skeleton looks like this:

1. Tabs for accessibility: https://alexandersandberg.com/articles/default-to-tabs-instead-of-spaces-for-an-accessible-first-environment/

def my_function(): # define a new function called my_function
  # indentation for
  # function code
  pass # this statement is here to make a valid empty function

Since Pandas is used for data analysis, let’s write some more “useful” functions:

[image: Images] squares a given value

[image: Images] takes two numbers and calculates their average

def my_sq(x):
  """Squares a given value
  """
  return x ** 2


def avg_2(x, y):
  """Calculates the average of 2 numbers
  """
  return (x + y) / 2

The text within the triple quotes """ is a “docstring”. It is the text that appears when you look up the help documentation about a function. You can such docstrings to create your own documentation for functions you write as well.

We’ve been using functions (and methods) throughout this book. If we want to use functions that we’ve created ourselves, we can call them just like functions we’ve loaded from a library.

my_calc_1 = my_sq(4)
print(my_calc_1)
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my_calc_2 = avg_2(10, 20)
print(my_calc_2)

15.0

5.2 Apply (Basics)

Now that we know how to write functions, how do we use them in Pandas? When working with DataFrames, it’s more likely that you want to use a function across rows or columns of your data.

Here’s a mock dataframe of two columns.

import pandas as pd

df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 30, 40]})
print(df)

    a   b
0  10  20
1  20  30
2  30  40

We can .apply() our functions over a Series (i.e., an individual column or row).

For didactic purposes, let’s use the function we wrote to square the 'a' column. In this overly-simplified example, we could have directly squared the column.

print(df['a'] ** 2)


0    100
1    400
2    900
Name: a, dtype: int64

Of course, that would not allow us to use a function we wrote ourselves.

5.2.1 Apply Over a Series

In our example, if we subset a single column or row using a single pair of square brackets, [ ], the type() of the object we get back is a Pandas Series.

# get the first column
print(type(df['a']))

<class 'pandas.core.series.Series'>

# get the first row
print(type(df.iloc[0]))

<class 'pandas.core.series.Series'>

The Series has a method called .apply().2 To use the .apply() method, we give it the function we want to use across each element in the Series.

2. Series apply documentation: https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.xhtml

For example, if we want to square each value in column a, we can do the following:

# apply our square function on the 'a' column
sq = df['a'].apply(my_sq)
print(sq)

0    100
1    400
2    900
Name: a, dtype: int64


Note

We do not need the round parentheses, ( ), when we pass the function into .apply(), we pass in my_sq instead of my_sq().

In more technical terms, this is called a “function factory”, where we are giving .apply() a reference to the function we want to use, but we are not invoking the function at this moment.



Let’s build on this example by writing a function that takes two parameters. The first parameter will be a value, and the second parameter will be the exponent to which we’ll raise the value. So far in our my_sq() function, we’ve “hard-coded” the exponent, 2, to raise our value.

def my_exp(x, e):
  return x ** e

Now, if we want to use our function, we have to provide two parameters to it.

# pass in the exponent, 3
cubed = my_exp(2, 3)
print(cubed)
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# if we don't pass in all the parameters
my_exp(2)

TypeError: my_exp() missing 1 required positional argument: 'e'

However, if we want to apply the function on our series, we will need to pass in the second parameter. To do this, we pass the second argument as a keyword argument into .apply().

# the exponent, e, to 2
ex = df['a'].apply(my_exp, e=2)
print(ex)

0    100
1    400
2    900
Name: a, dtype: int64

# exponent, e, to 3
ex = df['a'].apply(my_exp, e=3)
print(ex)

0    1000
1    8000
2   27000
Name: a, dtype: int64

5.2.2 Apply Over a DataFrame

Now that we’ve seen how to apply functions over a one-dimensional Series, let’s see how the syntax changes when we are working with DataFrames. Here is the example DataFrame from earlier:

df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 30, 40]})
print(df)

    a   b
0  10  20
1  20  30
2  30  40

DataFrames typically have at least two dimensions. Thus, when we apply a function over a dataframe, we first need to specify which axis to apply the function over–for example, column-by-column or row-by-row.

Let’s first write a function that takes a single value and prints out the given value. The function below does not have a return statement, All it is doing is displaying on the screen whatever we pass it.

def print_me(x):
  print(x)

Let’s .apply() this function on our dataframe, The syntax is similar to using the .apply() method on a Series, but this time we need to specify whether we want the function to be applied column-wise or row-wise.

If we want the function to work column-wise, we can pass the axis=0 or axis="index" parameter into .apply(). If we want the function to work row-wise, we can pass the axis=1 or axis="columns" parameter into .apply().3

3. I find the “index” and “column” text specification for the axis parameter counter-intuitive, so I will typically specify using the 0/1 notation with a comment. In practice, you will almost never set axis=1 or axis="columns" for performance reasons.

5.2.2.1 Column-Wise Operations

Use the axis=0 parameter (the default value) in .apply() when working with functions in a column-wise manner (i.e., for each column).

df.apply(print_me, axis =0)

0    10
1    20
2    30
Name: a, dtype: int64
0    20
1    30
2    40
Name: b, dtype: int64
___________

    0
___________
a    None
b    None
___________

Compare this output to the following:

print(df['a'])


0    10
1    20
2    30
Name: a, dtype: int64

print(df['b'])

0    20
1    30
2    40
Name: b, dtype: int64

You can see that the outputs are exactly the same. When you apply a function across a DataFrame (in this case, column-wise with axis=0), the entire axis (e.g., column) is passed into the first argument of the function. To illustrate this further, let’s write a function that calculates the mean (average) of three numbers (each column in our data set contains values).

def avg_3(x, y, z):
   return (x + y + z) / 3

If we try to apply this function across our columns, we get an error.

# will cause an error
print(df.apply(avg_3))

TypeError: avg_3() missing 2 required positional arguments: 'y' and 'z'

From the (last line of the) error message, you can see that the function takes three arguments (x, y, and z), but we failed to pass in the y and z (i.e., the second and third) arguments. Again, when we use .apply(), the entire column is passed into the first argument. For this function to work with the .apply() method, we will have to rewrite parts of it.

def avg_3_apply(col):
  """The avg_3 function but apply compatible
  by taking in all the values as the first argument
  and parsing out the values within the function
  """

   x = col[0]
   y = col[1]
   z = col[2]
   return (x + y + z) / 3

print(df.apply(avg_3_apply))

a    20.0
b    30.0
dtype: float64

Now that we’ve rewritten our function to take in all the column values, we get two values back after we apply (one for each column of our DataFrame) and each value represents the average of the three values.

5.2.2.2 Row-Wise Operations

Row-wise operations work just like column-wise operations. The part that differs is the axis we use. We will now use axis=1 in the .apply() method. Instead of the entire column being passed into the first argument of the function, the entire row is used as the first argument.

Since our example dataframe has two columns and three rows, the avg_3\apply() function we just wrote will not work for row-wise operations.

# will cause an error
print(df.apply(avg_3_apply, axis=1))

IndexError: index 2 is out of bounds for axis 0 with size 2

The main issue here is the 'index out of bounds'. We passed the row of data in as the first argument, but in our function we begin indexing out of range (i.e., we have only two values in each row, but we tried to get index 2, which means the third element, and it does not exist). If we wanted to calculate our averages row-wise, we would have to write a new function to work with two values.

def avg_2_apply(row):
  """Taking the average of row value.
  Assuming that there are only 2 values in a row.
  """

  x = row[0]
  y = row[1]
  return (x + y) / 2

print(df.apply(avg_2_apply, axis =0))


a   15.0
b   25.0
dtype: float64

5.3 Vectorized Functions

When we use .apply(), we are able to make a function work on a column-by-column or row-by-row basis. In the previous section, Section 5.2, we had to rewrite our function when we wanted to apply it because the entire column or row was passed into the first parameter of the function. However, there might be times when it is not feasible to rewrite a function in this way. We can leverage the .vectorize() function and decorator to vectorize any function. Vectorizing your code can also lead to performance gains (Appendix V).

Here’s our toy dataframe:

df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 30, 40]})
print(df)

    a   b
0  10  20
1  20  30
2  30  40

And here’s our average function, which we can apply on a row-by-row basis:

def avg_2(x, y):
  return (x + y) / 2

For a vectorized function, we’d like to be able to pass in a vector of values for x and a vector of values for y, and the results should be the average of the given x and y values in the same order. In other words, we want to be able to write avg_2(df['a'], df['y']) and get [15, 25, 35] as a result.

print(avg_2(df['a'], df['b']))

0   15.0
1   25.0
2   35.0
dtype: float64

This approach works because the actual calculations within our function are inherently vectorized. That is, if we add two numeric columns together, Pandas (and the NumPy library) will automatically perform element-wise addition. Likewise, when we divide by a scalar, it will “broadcast” the scalar, and divide each element by the scalar.

Let’s change our function and perform a non-vectorizable calculation.

import numpy as np

def avg_2_mod(x, y):
   """Calculate the average, unless x is 20
   If the value is 20, return a missing value
   """
   if (x == 20):
     return(np.NaN)
   else:
     return (x + y) / 2

If we run this function, it will cause an error.

# will cause an error
print(avg_2_mod(df['a'], df['b']))

ValueError: The truth value of a Series is ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().

However, if we give it individual numbers instead of a vector, it will work as expected.

print(avg_2_mod(10, 20))

15.0

print(avg_2_mod(20, 30))

nan

5.3.1 Vectorize with NumPy

We want to change our function so that when it is given a vector of values, it will perform the calculations in an element-wise manner. We can do this by using the vectorize() function from numpy. We pass np.vectorize() to the function we want to vectorize, to create a new function.

import numpy as np

# np.vectorize actually creates a new function
avg_2_mod_vec = np.vectorize(avg_2_mod)

# use the newly vectorized function
print(avg_2_mod_vec(df['a'], df['b']))

[15. nan 35.]

This method works well if you do not have the source code for an existing function. However, if you are writing your own function, you can use a Python decorator to automatically vectorize the function without having to create a new function. A decorator is a function that takes another function as input, and modifies how that function’s output behaves.

# to use the vectorize decorator
# we use the @ symbol before our function definition
@np.vectorize
def v_avg_2_mod(x, y):
  """Calculate the average, unless x is 20
  Same as before, but we are using the vectorize decorator
  """

  if (x == 20):
    return(np.NaN)
  else:
    return (x + y) / 2

# we can then directly use the vectorized function
# without having to create a new function
print(v_avg_2_mod(df['a'], df['b']))

[15. nan 35.]

5.3.2 Vectorize with Numba

The numba library4 is designed to optimize Python code, especially calculations on arrays performing mathematical calculations. Just like numpy, it also has a vectorize decorator.

4. numba: https://numba.pydata.org/

import numba

@numba.vectorize
def v_avg_2_numba(x, y):
  """Calculate the average, unless x is 20
  Using the numba decorator.
  """
  # we now have to add type information to our function
  if (int(x) == 20):
    return(np.NaN)
  else:
    return (x + y) / 2

The numba library is so optimized that it does not understand Pandas objects.

print(v_avg_2_numba(df['a'], df['b']))

ValueError: Cannot determine Numba type of
<class 'pandas.core.series.Series'>

We actually have to pass in the numpy array representation of our data using the .values attribute of our Series objects (Chapter R).

# passing in the numpy array
print(v_avg_2_numba(df['a'].values, df['b'].values))

[15. nan 35.]

5.4 Lambda Functions (Anonymous Functions)

Sometimes the function used in the .apply() method is simple enough that there is no need to create a separate function.

Let’s look at our simple DataFrame example and our squaring function again.

df = pd.DataFrame({'a': [10, 20, 30],
                   'b': [20, 30, 40]})
print(df)


    a   b
0  10  20
1  20  30
2  30  40

def my_sq(x):
  return x ** 2

df['a_sq'] = df['a'].apply(my_sq)
print(df)

    a   b  a_sq
0  10  20   100
1  20  30   400
2  30  40   900

You can see that the actual function is a simple one-liner. Usually when this happens, people will opt to write the one-liner directly in the apply method. This method is called using lambda functions. We can perform the same operation as shown earlier in the following manner.

df['a_sq_lamb'] = df['a'].apply(lambda x: x ** 2)
print(df)

    a   b  a_sq  a_sq_lamb
0  10  20   100        100
1  20  30   400        400
2  30  40   900        900

To write the lambda function, we use the lambda keyword. Since apply functions will pass the entire axis as the first argument, our lambda function example takes only one parameter, x. The x in lambda x is analogous to the x in def my_sq(x), each value in the 'a' column will be individually passed into our lambda function. We can then write our function directly, without having to define it. The calculated result is automatically returned.

Although you can write complex multiple-line lambda functions, typically people will use the lambda function approach when small one-liner calculations are needed. The code can become hard to read if the lambda function tries to do too much at once.

Conclusion

This chapter covered an important concept – namely, creating functions that can be used on our data. Not all data cleaning steps or manipulations can be done using built-in functions. There will be many times when you will have to write your own custom functions to process and analyze data.

This chapter uses oversimplified examples to create and use functions, but that means we can go into more complex examples as we learn more about the pandas library.



Part II

Data Processing

Chapter 6 Data Assembly

Chapter 7 Data Normalization

Chapter 8 Groupby Operations: Split-Apply-Combine

Now that we know the basics of working with our data, we can go into more detail on how to process it. Data does not always come in one part. We begin with combining multiple data sets, by either concatenating it together or joining them by values (Chapter 6). Combining data is usually something we do in the tidying process (Chapter 4), but normalizing data is the process of splitting it up into separate parts. It seems counterintuitive to split data up, but this is something that is typically done for data storage, especially for databases (Chapter 7). Finally, we go into more detail into grouped operations (Chapter 8) that were first introduced in Chapter 1.
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Data Assembly

By now, you should be able to load data into pandas and do some basic visualizations. This part of the book focuses on various data cleaning tasks. We begin with assembling a data set for analysis by combining various data sets together.

Learning Objectives

[image: Images] Identify when needs to be combined

[image: Images] Identify whether data needs to be concatenated or joined together

[image: Images] Use the appropriate function or methods to combine multiple data sets

[image: Images] Produce a single data set from multiple files

[image: Images] Assess whether data was joined properly

6.1 Combine Data Sets

We first talked about tidy data principles in Chapter 4. This chapter will cover the third criterion in the original Tidy Data paper1, “each type of observational unit forms a table.”

1. Tidy Data paper: http://vita.had.co.nz/papers/tidy-data.pdf

When data is tidy, you need to combine various tables together to answer a question. For example, there may be a separate table holding company information and another table holding stock prices. If we want to look at all the stock prices within the tech industry, we may first have to find all the tech companies from the company information table, and then combine that data with the stock price data to get the data we need for our question. The data may have been split up into separate tables to reduce the amount of redundant information (we don’t need to store the company information with each stock price entry), but this arrangement means we as data analysts must combine the relevant data ourselves to answer our question.

Other times, a single data set may be split into multiple parts. For example, with timeseries data, each date may be in a separate file. In another case, a file may have been split into parts to make the individual files smaller. You may also need to combine data from multiple sources to answer a question (e.g., combine latitudes and longitudes with zip codes). In both cases, you will need to combine data into a single dataframe for analysis.

6.2 Concatenation

One of the (conceptually) easier ways to combine data is with concatenation. Concatenation can be thought of as appending a row or column to your data. This approach is possible if your data was split into parts or if you performed a calculation that you want to append to your existing data set.

Let’s begin with some example data sets so you can see what is actually happening.

import pandas as pd

df1 = pd.read_csv('data/concat_1.csv')
df2 = pd.read_csv('data/concat_2.csv')
df3 = pd.read_csv('data/concat_3.csv')

print(df1)


    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3

print(df2)


    A   B   C   D
0  a4  b4  c4  d4
1  a5  b5  c5  d5
2  a6  b6  c6  d6
3  a7  b7  c7  d7

print(df3)

     A    B    C    D
0   a8   b8   c8   d8
1   a9   b9   c9   d9
2  a10  b10  c10  d10
3  a11  b11  c11  d11

Concatenation is accomplished by using the concat() function from Pandas.

6.2.1 Review Parts of a DataFrame

Section 2.3.1 talked about the three parts of a dataframe: .index, .columns, and .values. We will be working with .index and .columns a lot in this chapter.

The .index refers to the labels on the left of the dataframe, by default they will be numbered starting from 0.

print(df1.index)

RangeIndex(start=0, stop=4, step=1)

The “index” is an “axis” of a dataframe. These terms are important because pandas will try to automatically align by axis. The other axis is the “columns,” which we can get with .columns.

print(df1.columns)

Index(['A', 'B', 'C', 'D'], dtype='object')

This refers to the column names of the dataframe.

Finally, just to be complete, the body of the dataframe can be represented as an numpy array with .values.

print(df1.values)

[['a0'  'b0'  'c0'  'd0']
 ['a1'  'b1'  'c1'  'd1']
 ['a2'  'b2'  'c2'  'd2']
 ['a3'  'b3'  'c3'  'd3']]

6.2.2 Add Rows

Stacking (i.e., concatenating) the dataframes on top of each other uses the concat() function in pandas. All of the dataframes to be concatenated are passed in a list.

row_concat = pd.concat([df1, df2, df3])
print(row_concat)


     A    B    C    D
0    a0   b0   c0   d0
1    a1   b1   c1   d1
2    a2   b2   c2   d2
3    a3   b3   c3   d3
0    a4   b4   c4   d4
..  ...   ... ...  ...
3    a7   b7   c7   d7
0    a8   b8   c8   d8
1    a9   b9   c9   d9
2   a10  b10  c10  d10
3   a11  b11  c11  d11

[12 rows x 4 columns]

As you can see, concat() blindly stacks the dataframes together. If you look at the row names (i.e., the row indices), they are also simply a stacked version of the original row indices. If we apply the various subsetting methods (Table 2.3), the table will be subsetted as expected.

# subset the fourth row of the concatenated dataframe
print(row_concat.iloc[3, :])

A    a3
B    b3
C    c3
D    d3
Name: 3, dtype: object


Question

What happens when you use .loc[] to subset the new dataframe?



Section 2.1.1 showed the process for creating a Series. However, if we create a new series to append to a dataframe, it does not append correctly.

# create a new row of data
new_row_series = pd.Series(['n1', 'n2', 'n3', 'n4'])
print(new_row_series)

0    n1
1    n2
2    n3
3    n4
dtype: object

# attempt to add the new row to a dataframe
print(pd.concat([df1, new_row_series]))

      A     B     C     D     0
0    a0    b0    c0    d0   NaN
1    a1    b1    c1    d1   NaN
2    a2    b2    c2    d2   NaN
3    a3    b3    c3    d3   NaN
0   NaN   NaN   NaN   NaN    n1
1   NaN   NaN   NaN   NaN    n2
2   NaN   NaN   NaN   NaN    n3
3   NaN   NaN   NaN   NaN    n4

The first things you may notice are the NaN missing values. This is simply Python’s way of representing a “missing value” (more about missing values in Chapter 9). We were hoping to append our new values as a row, but that didn’t happen. In fact, not only did our code not append the values as a row, but it also created a new column completely misaligned with everything else.

Let’s think about what is happening here. First, our series did not have a matching column, so our new_row was added to a new column. The rest of the values were concatenated to the bottom of the dataframe, and the original index values were retained.

To fix this problem, we need turn our series into a dataframe. This data frame contains one row of data, and the column names are the ones the data will bind to.

new_row_df = pd.DataFrame(
  # note the double brackets to create a "row" of data
  data =[["n1", "n2", "n3", "n4"]],
  columns =["A", "B", "C", "D"],
)

print(new_row_df)

    A    B    C    D
0  n1   n2   n3   n4

# concatenate the row of data
print(pd.concat([df1, new_row_df]))

    A    B    C    D
0  a0   b0   c0   d0
1  a1   b1   c1   d1
2  a2   b2   c2   d2
3  a3   b3   c3   d3
0  n1   n2   n3   n4

concat() is a general function that can concatenate multiple things at once.

6.2.2.1 Ignore the Index

In the last example, when we added a dict to a dataframe, we had to use the ignore_index parameter. If we look closer, you can see that the row index was also incremented by 1, and did not repeat a previous index value.

If we simply want to concatenate or append data together, we can use the ignore_index parameter to reset the row index after the concatenation.

row_concat_i = pd.concat([df1, df2, df3], ignore_index=True)
print(row_concat_i)

       A     B     C     D
0     a0    b0    c0    d0
1     a1    b1    c1    d1
2     a2    b2    c2    d2
3     a3    b3    c3    d3
4     a4    b4    c4    d4
..   ...   ...   ...   ...
7     a7    b7    c7    d7
8     a8    b8    c8    d8
9     a9    b9    c9    d9
10   a10   b10   c10   d10
11   a11   b11   c11   d11

[12 rows x 4 columns]

6.2.3 Add Columns

Concatenating columns is very similar to concatenating rows. The main difference is the axis parameter in the concat function. The default value of axis is 0 (or "index"), so it will concatenate data in a row-wise fashion. However, if we pass axis=1 (or axis="columns") to the function, it will concatenate data in a column-wise manner.

col_concat = pd.concat([df1, df2, df3], axis="columns")
print(col_concat)

    A   B   C   D   A   B   C   D    A    B    C    D
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11

If we try to subset data based on column names, we will get a similar result when we concatenated row-wise and subset by row index.

print(col_concat['A'])

    A   A   A
0  a0  a4   a8
1  a1  a5   a9
2  a2  a6  a10
3  a3  a7  a11

Adding a single column to a dataframe can be done directly without using any specific Pandas function (We saw this in Section 2.4.1). Simply pass a new column name for the vector you want assigned to the new column.

col_concat['new_col_list'] = ['n1', 'n2', 'n3', 'n4']
print(col_concat)

    A   B   C   D   A   B   C   D    A    B   C    D  new_col_list
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8           n1
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9           n2
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10           n3
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11           n4

col_concat['new_col_series'] = pd.Series(['n1', 'n2', 'n3', 'n4'])
print(col_concat)

    A   B   C   D   A   B   C   D    A    B    C    D  new_col_list \
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8            n1
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9            n2
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10            n3
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11            n4

  new_col_series
0             n1
1             n2
2             n3
3             n4

Using the concat() function still works, as long as you give it a dataframe. However this approach requires more code.

Finally, we can reset the column indices so we do not have duplicated column names.

print(pd.concat([df1, df2, df3], axis="columns", ignore_index=True))

    0   1   2   3   4   5   6   7    8    9   10   11
0  a0  b0  c0  d0  a4  b4  c4  d4   a8   b8   c8   d8
1  a1  b1  c1  d1  a5  b5  c5  d5   a9   b9   c9   d9
2  a2  b2  c2  d2  a6  b6  c6  d6  a10  b10  c10  d10
3  a3  b3  c3  d3  a7  b7  c7  d7  a11  b11  c11  d11

6.2.4 Concatenate with Different Indices

The examples shown so far have assumed we are performing a row or column concatenation. They also assume that the new row(s) had the same column names or the column(s) had the same row indices.

This section addresses what happens when the row and column indices are not aligned.

6.2.4.1 Concatenate Rows with Different Columns

Let’s modify our dataframes for the next few examples.

# rename the columns of our dataframes
df1.columns = ['A', 'B', 'C', 'D']
df2.columns = ['E', 'F', 'G', 'H']
df3.columns = ['A', 'C', 'F', 'H']

print(df1)

    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3

print(df2)

    E   F   G   H
0  a4  b4  c4  d4
1  a5  b5  c5  d5
2  a6  b6  c6  d6
3  a7  b7  c7  d7

print(df3)

     A    C    F    H
0   a8   b8   c8   d8
1   a9   b9   c9   d9
2  a10  b10  c10  d10
3  a11  b11  c11  d11

If we try to concatenate these dataframes as we did in Section 6.2.2, the dataframes now do much more than simply stack one on top of the other. The columns align themselves, and NaN fills in any missing areas.

row_concat = pd.concat([df1, df2, df3])
print(row_concat)

     A     B     C    D      E     F     G     H
0   a0    b0    c0    d0   NaN   NaN   NaN   NaN
1   a1    b1    c1    d1   NaN   NaN   NaN   NaN
2   a2    b2    c2    d2   NaN   NaN   NaN   NaN
3   a3    b3    c3    d3   NaN   NaN   NaN   NaN
0  NaN   NaN   NaN   NaN    a4    b4    c4    d4
.. ...   ...   ...   ...   ...   ...   ...   ...
3  NaN   NaN   NaN   NaN    a7    b7    c7    d7
0   a8   NaN    b8   NaN   NaN    c8   NaN    d8
1   a9   NaN    b9   NaN   NaN    c9   NaN    d9
2  a10   NaN   b10   NaN   NaN   c10   NaN   d10
3  a11   NaN   b11   NaN   NaN   c11   NaN   d11

[12 rows x 8 columns]

One way to avoid the inclusion of NaN values is to keep only those columns that are shared in common by the list of objects to be concatenated. A parameter named join accomplishes this. By default, it has a value of 'outer', meaning it will keep all the columns. However, we can set join='inner' to keep only the columns that are shared among the data sets.

If we try to keep only the columns from all three dataframes, we will get an empty dataframe, since there are no columns in common.

print(pd.concat([df1, df2, df3], join ='inner'))

Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

[12 rows x 0 columns]

If we use the dataframes that have columns in common, only the columns that all of them share will be returned.


print(pd.concat([df1,df3], ignore_index =False, join ='inner'))

     A    C
0   a0   c0
1   a1   c1
2   a2   c2
3   a3   c3
0   a8   b8
1   a9   b9
2  a10  b10
3  a11  b11

6.2.4.2 Concatenate Columns with Different Rows

Let’s take our dataframes and modify them again so that they have different row indices. Here, we are building on the same dataframe modifications from Section 6.2.4.1.

df1.index = [0, 1, 2, 3]
df2.index = [4, 5, 6, 7]
df3.index = [0, 2, 5, 7]

print(df1)

    A   B   C   D
0  a0  b0  c0  d0
1  a1  b1  c1  d1
2  a2  b2  c2  d2
3  a3  b3  c3  d3

print(df2)

    E   F   G   H
4  a4  b4  c4  d4
5  a5  b5  c5  d5
6  a6  b6  c6  d6
7  a7  b7  c7  d7

print(df3)

     A    C    F    H
0   a8   b8   c8   d8
2   a9   b9   c9   d9
5  a10  b10  c10  d10
7  a11  b11  c11  d11

When we concatenate along axis="columns" (axis=1), the new dataframes will be added in a column-wise fashion and matched against their respective row indices. Missing values indicators appear in the areas where the indices did not align.

col_concat = pd.concat([df1, df2, df3], axis="columns")
print(col_concat)

     A    B    C    D    E    F    G    H    A   C     F   H
0   a0   b0   c0   d0  NaN  NaN  NaN  NaN   a8   b8   c8   d8
1   a1   b1   c1   d1  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
2   a2   b2   c2   d2  NaN  NaN  NaN  NaN   a9   b9   c9   d9
3   a3   b3   c3   d3  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN   a4   b4   c4   d4  NaN  NaN  NaN  NaN
5  NaN  NaN  NaN  NaN   a5   b5   c5   d5  a10  b10  c10  d10
6  NaN  NaN  NaN  NaN   a6   b6   c6   d6  NaN  NaN  NaN  NaN
7  NaN  NaN  NaN  NaN   a7   b7   c7   d7  a11  b11  c11  d11

Just as we did when we concatenated in a row-wise manner, we can choose to keep the results only when there are matching indices by using join="inner".

print(pd.concat([df1, df3], axis ="columns", join='inner'))

    A   B   C   D   A   C   F   H
0  a0  b0  c0  d0  a8  b8  c8  d8
2  a2  b2  c2  d2  a9  b9  c9  d9

6.3 Observational Units Across Multiple Tables

One reason why data might be split across multiple files would be the size of the files. By splitting up data into various parts, each part would be smaller. This may be good when we need to share data on the Internet or via email, since many services limit the size of a file that can be opened or shared. Another reason why a data set might be split into multiple parts would be to account for the data collection process. For example, a separate data set containing stock information could be created for each day.

Since merging and concatenation have already been covered, this section will focus on techniques for quickly loading multiple data sources and assembling them together.

In this example, all of the billboard ratings data have a pattern.

data/billboard-by_week/billboard-XX.csv

Where XX represents the week (e.g., 03). We can use the a pattern matching function from the built-in pathlib module in Python to get a list of all the filenames that match a particular pattern.

from pathlib import Path

# from my current directory fine (glob) the this pattern

billboard_data_files = (
    Path(".")
    .glob("data/billboard-by_week/billboard-*.csv")
)

# this line is optional if you want to see the full list of files
billboard_data_files = sorted(list(billboard_data_files))

print(billboard_data_files)

[PosixPath('data/billboard-by_week/billboard-01.csv'),
PosixPath('data/billboard-by_week/billboard-02.csv'),
PosixPath('data/billboard-by_week/billboard-03.csv'),
PosixPath('data/billboard-by_week/billboard-04.csv'),
PosixPath('data/billboard-by_week/billboard-05.csv'),
..    ...                ...               ...   ...
PosixPath('data/billboard-by_week/billboard-72.csv'),
PosixPath('data/billboard-by_week/billboard-73.csv'),
PosixPath('data/billboard-by_week/billboard-74.csv'),
PosixPath('data/billboard-by_week/billboard-75.csv'),
PosixPath('data/billboard-by_week/billboard-76.csv')]

The type() of billboard_data_files is a generator object, so if you “use it” you will lose its contents. If you want to see the full list, you would need to run:

billboard_data_files = list(billboard_data_files)

Now that we have a list of filenames we want to load, we can load each file into a dataframe. We can choose to load each file individually, as we have been doing so far.

billboard01 = pd.read_csv(billboard_data_files[0])
billboard02 = pd.read_csv(billboard_data_files[1])
billboard03 = pd.read_csv(billboard_data_files[2])

# just look at one of the data sets we loaded
print(billboard01)

     year            artist                    track   time  \
0    2000             2 Pac  Baby Don't Cry (Keep...   4:22
1    2000           2Ge+her  The Hardest Part Of ...   3:15
2    2000      3 Doors Down                Kryptonit   3:53
3    2000      3 Doors Down                    Loser   4:24
4    2000          504 Boyz             Wobble Wobble  3:35
..    ...               ...                       ...   ...
312  2000       Yankee Grey      Another Nine Minutes  3:10
313  2000  Yearwood, Trisha           Real Live Woman  3:55
314  2000   Ying Yang Twins   Whistle While You Tw...  4:19
315  2000     Zombie Nation             Kernkraft 400  3:30
316  2000   matchbox twenty                      Bent  4:12

   date.entered week  rating
0    2000-02-26  wk1    87.0
1    2000-09-02  wk1    91.0
2    2000-04-08  wk1    81.0
3    2000-10-21  wk1    76.0
4    2000-04-15  wk1    57.0
..          ...  ...     ...
312  2000-04-29  wk1    86.0
313  2000-04-01  wk1    85.0
314  2000-03-18  wk1    95.0
315  2000-09-02  wk1    99.0
316  2000-04-29  wk1    60.0

[317 rows x 7 columns]

We can concatenate them just as we did in Chapter 6.

# shape of each dataframe
print(billboard01.shape)
print(billboard02.shape)
print(billboard03.shape)

(317, 7)
(317, 7)
(317, 7)

# concatenate the dataframes together
billboard = pd.concat([billboard01, billboard02, billboard03])

# shape of final concatenated taxi data
print(billboard.shape)

(951, 7)

Let’s write a check to make sure the number of rows were concatenated correctly

assert (
    billboard01.shape[0]
    + billboard02.shape[0]
    + billboard03.shape[0]
    == billboard.shape[0]
)

However, manually saving each dataframe will get tedious when the data is split into many parts. As an alternative approach, we can automate the process using loops and list comprehensions.

6.3.1 Load Multiple Files Using a Loop

An easier way to load multiple files is to first create an empty list, use a loop to iterate though each of the CSV files, load the CSV files into a Pandas dataframe, and finally append the dataframe to the list. The final type of data we want is a list of dataframes because the concat() function takes a list of dataframes to concatenate.

# this part was the same as earlier
from pathlib import Path
billboard_data_files = (
    Path(".")
    .glob("data/billboard-by_week/billboard-*.csv")
)

# create an empty list to append to
list_billboard_df = []

# loop though each CSV filename
for csv_filename in billboard_data_files:
    # you can choose to print the filename for debugging
    # print(csv_filename)

    # load the CSV file into a dataframe
    df = pd.read_csv(csv_filename)

    # append the dataframe to the list that will hold the dataframes
    list_billboard_df.append(df)

# print the length of the dataframe
print(len(list_billboard_df))
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Important

The Path.glob() method returns a generator (Appendix P). This means that when we go through each element of the “list,” the item gets “used up,” so it won’t exist again. This saves a lot of compute resources since Python does not need to store everything in memory all at once. The downside is you will need to re-create the generator if you plan on using it multiple times. You can opt to turn the generator into a regular python list so all the elements are stored perpetually by using the list() function, e.g., list(billboard_data_files).



# type of the first element
print(type(list_billboard_df[0]))

<class 'pandas.core.frame.DataFrame'>

# look at the first dataframe
print(list_billboard_df[0])

     year            artist                    track  time  \
0    2000             2 Pac  Baby Don't Cry (Keep...  4:22
1    2000           2Ge+her  The Hardest Part Of ...  3:15
2    2000      3 Doors Down               Kryptonite  3:53
3    2000      3 Doors Down                    Loser  4:24
4    2000          504 Boyz            Wobble Wobble  3:35
..    ...               ...                      ...   ...
312  2000       Yankee Grey     Another Nine Minutes  3:10
313  2000  Yearwood, Trisha          Real Live Woman  3:55
314  2000   Ying Yang Twins  Whistle While You Tw...  4:19
315  2000     Zombie Nation            Kernkraft 400  3:30
316  2000   matchbox twenty                     Bent  4:12

   date.entered  week  rating
0    2000-02-26  wk15     NaN
1    2000-09-02  wk15     NaN
2    2000-04-08  wk15    38.0
3    2000-10-21  wk15    72.0
4    2000-04-15  wk15    78.0
..          ...   ...     ...
312  2000-04-29  wk15     NaN
313  2000-04-01  wk15     NaN
314  2000-03-18  wk15     NaN
315  2000-09-02  wk15     NaN
316  2000-04-29  wk15     3.0

[317 rows x 7 columns]

Now that we have a list of dataframes, we can concatenate them.

billboard_loop_concat = pd.concat(list_billboard_df)
print(billboard_loop_concat.shape)

(24092, 7)

6.3.2 Load Multiple Files Using a List Comprehension

Python has an idiom for looping though something and adding it to a list, called a list comprehension. The loop given previously, which is shown here again without the comments, can be written in a list comprehension (Appendix K).

# we have to re-create the generator because we
# "used it up" in the previous example
billboard_data_files = (
    Path(".")
    .glob("data/billboard-by_week/billboard-*.csv")
)
# the loop code without comments
list_billboard_df = []
for csv_filename in billboard_data_files:
    df = pd.read_csv(csv_filename)
    list_billboard_df.append(df)

billboard_data_files = (
    Path(".")
    .glob("data/billboard-by_week/billboard-*.csv")
)

# same code in a list comprehension
billboard_dfs = [pd.read_csv(data) for data in billboard_data_files]


Warning

If you get a ValueError: No objects to concatenate message, it means you did not re-create the billboard_data_files generator.



The result from our list comprehension is a list, just as the earlier loop example.

print(type(billboard_dfs))

<class 'list'>

print(len(billboard_dfs))
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Finally, we can concatenate the results just as we did earlier.

billboard_concat_comp = pd.concat(billboard_dfs)

print(billboard_concat_comp)

     year            artist                    track  time  \
0    2000             2 Pac  Baby Don't Cry (Keep...  4:22
1    2000           2Ge+her  The Hardest Part Of ...  3:15
2    2000      3 Doors Down               Kryptonite  3:53
3    2000      3 Doors Down                    Loser  4:24
4    2000          504 Boyz            Wobble Wobble  3:35
..    ...               ...                      ...   ...
312  2000       Yankee Grey     Another Nine Minutes  3:10
313  2000  Yearwood, Trisha          Real Live Woman  3:55
314  2000   Ying Yang Twins  Whistle While You Tw...  4:19
315  2000     Zombie Nation            Kernkraft 400  3:30
316  2000   matchbox twenty                     Bent  4:12

   date.entered  week  rating
0    2000-02-26  wk15     NaN
1    2000-09-02  wk15     NaN
2    2000-04-08  wk15    38.0
3    2000-10-21  wk15    72.0
4    2000-04-15  wk15    78.0
..          ...   ...     ...
312  2000-04-29  wk18    NaN
313  2000-04-01  wk18    NaN
314  2000-03-18  wk18    NaN
315  2000-09-02  wk18    NaN
316  2000-04-29  wk18    3.0
 
[24092 rows x 7 columns]

6.4 Merge Multiple Data Sets

The previous section alluded to a few database concepts. The join="inner" and the default join="outer" parameters come from working with databases when we want to merge tables.

Instead of simply having a row or column index that you want to use to concatenate values, sometimes you may have two or more dataframes that you want to combine based on common data values. This task is known in the database world as performing a “join.”

Pandas has a .join() method that uses .merge() under the hood. .join() will merge dataframe objects based on an index, but the .merge() function is much more explicit and flexible.

If you are planning to merge dataframes by the row index, for example, you might want to look into the .join() method.2

2. Pandas DataFrame.join() method: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.xhtml

We will be using the set of survey data in the following examples.

person = pd.read_csv('data/survey_person.csv')
site = pd.read_csv('data/survey_site.csv')
survey = pd.read_csv('data/survey_survey.csv')
visited = pd.read_csv('data/survey_visited.csv')

print(person)

      ident   personal   family
0      dyer    William     Dyer
1        pb      Frank  Pabodie
2      lake   Anderson     Lake
3       roe  Valentina  Roerich
4  danforth      Frank  Danforth

print(site)

    name    lat    long
0   DR-1 -49.85 -128.57
1   DR-3 -47.15 -126.72
2  MSK-4 -48.87 -123.40

print(visited)

  ident  site       dated
0   619  DR-1  1927-02-08
1   622  DR-1  1927-02-10
2   734  DR-3  1939-01-07
3   735  DR-3  1930-01-12
4   751  DR-3  1930-02-26
5   752  DR-3         NaN
6   837 MSK-4  1932-01-14
7   844  DR-1  1932-03-22

print(survey)

    taken person quant reading
0    619   dyer   rad    9.82
1    619   dyer   sal    0.13
2    622   dyer   rad    7.80
3    622   dyer   sal    0.09
4    734     pb   rad    8.41
..   ...    ...   ...     ...
16   752    roe   sal   41.60
17   837   lake   rad    1.46
18   837   lake   sal    0.21
19   837    roe   sal   22.50
20   844    roe   rad   11.25

[21 rows x 4 columns]

Currently, our data is split into multiple parts, where each part is an observational unit. If we wanted to look at the dates at each site along with the latitude and longitude information for that site, we would have to combine (and merge) multiple dataframes. We can do this with the .merge() method in Pandas.

When we call this method, the dataframe that is called will be referred to as the one on the “left.” Within the .merge() method, the first parameter is the “right” dataframe (i.e., left.merge(right)). The next parameter is how the final merged result looks.


Table 6.1 How the Pandas how Parameter Relates to SQL

[image: images]



Table 6.1 provides more details. Next, we set the on parameter. This specifies which columns to match on. If the left and right columns do not have the same name, we can use the left_on and right_on parameters instead.

6.4.1 One-to-One Merge

In the simplest type of merge, we have two dataframes where we want to join one column to another column, and where the columns we want to join do not contain any duplicate values.

For this example, we will modify the visited dataframe so there are no duplicated site values.

visited_subset = visited.loc[[0, 2, 6], :]
print(visited_subset)

 ident   site       dated
0  619   DR-1  1927-02-08
2  734   DR-3  1939-01-07
6  837  MSK-4  1932-01-14

# get a count of the values in the site column
print(
  visited_subset["site"].value_counts()
)


DR-1     1
DR-3     1
MSK-4    1
Name: site, dtype: int64

We can perform our one-to-one merge as follows:

# the default value for 'how' is 'inner'
# so it doesn't need to be specified
o2o_merge = site.merge(
    visited_subset, left_on="name", right_on="site"
)
print(o2o_merge)

   name    lat    long  ident   site      dated
0  DR-1 -49.85 -128.57    619   DR-1  1927-02-08
1  DR-3 -47.15 -126.72    734   DR-3  1939-01-07
2 MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14

As you can see, we have now created a new dataframe from two separate dataframes where the rows were matched based on a particular set of columns. In SQL-speak, the columns used to match are called “keys.”

6.4.2 Many-to-One Merge

If we choose to do the same merge, but this time without using the subsetted visited dataframe, we would perform a many-to-one merge. In this kind of merge, one of the dataframes has key values that repeat.


# get a count of the values in the site column
print(
  visited["site"].value_counts()
)


DR-3     4
DR-1     3
MSK-4    1
Name: site, dtype: int64

The dataframes that contain the single observations will then be duplicated in the merge.

m2o_merge = site.merge(visited, left_on='name', right_on='site')
print(m2o_merge)

    name    lat    long  ident   site       dated
0   DR-1 -49.85 -128.57    619   DR-1  1927-02-08
1   DR-1 -49.85 -128.57    622   DR-1  1927-02-10
2   DR-1 -49.85 -128.57    844   DR-1  1932-03-22
3   DR-3 -47.15 -126.72    734   DR-3  1939-01-07
4   DR-3 -47.15 -126.72    735   DR-3  1930-01-12
5   DR-3 -47.15 -126.72    751   DR-3  1930-02-26
6   DR-3 -47.15 -126.72    752   DR-3         NaN
7  MSK-4 -48.87 -123.40    837  MSK-4  1932-01-14

The site information (name, lat, and long) were duplicated and matched to the visited data.

6.4.3 Many-to-Many Merge

Lastly, there will be times when we want to perform a match based on multiple columns. As an example, suppose we have two dataframes that come from person merged with survey, and another dataframe that comes from visited merged with survey.


Danger

All the code for performing a merge uses the same method, .merge(). The only thing that makes the results differ is whether or not the left and/or right dataframe has duplicate keys.

In practice, you usually do not want a many-to-many merge. Since that means a cartesian product of the keys were joined together. That is, every combination of duplicated values were combined.



ps = person.merge(survey, left_on='ident', right_on='person')
vs = visited.merge(survey, left_on='ident', right_on='taken')

print(ps)

   ident   personal   family taken person quant reading
0   dyer    William     Dyer   619   dyer   rad    9.82
1   dyer    William     Dyer   619   dyer   sal    0.13
2   dyer    William     Dyer   622   dyer   rad    7.80
3   dyer    William     Dyer   622   dyer   sal    0.09
4     pb      Frank  Pabodie   734     pb   rad    8.41
..   ...        ...      ...   ...    ...   ...     ...
14  lake   Anderson     Lake   837   lake   rad    1.46
15  lake   Anderson     Lake   837   lake   sal    0.21
16   roe  Valentina  Roerich   752    roe   sal   41.60
17   roe  Valentina  Roerich   837    roe   sal   22.50
18   roe  Valentina  Roerich   844    roe   rad   11.25

[19 rows x 7 columns]

print(vs)

  ident   site       dated  taken person quant reading
0   619   DR-1  1927-02-08    619   dyer   rad    9.82
1   619   DR-1  1927-02-08    619   dyer   sal    0.13
2   622   DR-1  1927-02-10    622   dyer   rad    7.80
3   622   DR-1  1927-02-10    622   dyer   sal    0.09
4   734   DR-3  1939-01-07    734     pb   rad    8.41
..  ...    ...         ...    ...    ...   ...    ...
16  752   DR-3         NaN    752    roe   sal   41.60
17  837  MSK-4  1932-01-14    837   lake   rad    1.46
18  837  MSK-4  1932-01-14    837   lake   sal    0.21
19  837  MSK-4  1932-01-14    837    roe   sal   22.50
20  844   DR-1  1932-03-22    844    roe   rad   11.25

[21 rows x 7 columns]

We know there is a many-to-many merge happening because there are duplicate values in the keys for both the left and right dataframe.

print(
  ps["quant"].value_counts()
)

rad     8
sal     8
temp    3
Name: quant, dtype: int64

print(
  vs["quant"].value_counts()
)

sal     9
rad     8
temp    4
Name: quant, dtype: int64

We can perform a many-to-many merge by passing the multiple columns to match on in a Python list.

ps_vs = ps.merge(
    vs,
    left_on=["quant"],
    right_on=["quant"],
)

Let’s look at just the first row of data.

print(ps_vs.loc[0, :])

ident_x            dyer
personal        William
family             Dyer
taken_x             619
person_x           dyer
                ...
site               DR-1
dated        1927-02-08
taken_y             619
person_y           dyer
reading_y          9.82
Name: 0, Length: 13, dtype: object

Pandas will automatically add a suffix to a column name if there are collisions in the name. In the output, the _x refers to values from the left dataframe, and the _y suffix comes from values in the right dataframe.

6.4.4 Check Your Work with Assert

A simple way to check your work before and after a merge is by looking at the number of rows of our data before and after the merge. If you end up with more rows than either of the dataframes you are merging together, that means a many-to-many merge occurred, and that is usually situation you do not want.

print(ps.shape) # left dataframe

(19, 7)

print(vs.shape) # right dataframe

(21, 7)

print(ps_vs.shape) # after merge

(148, 13)

One way you can check your work is by having your code fail when you know a bad condition exists. You can achieve this by using the Python assert statement. When an expression evaluates to True, assert will not return anything, and your code will continue on to the next expression.

# expect this to be true
# note there is no output
assert vs.shape[0] == 21

However, if the expression to assert evaluates to False, it will throw an AssertionError, and your code will stop.

assert ps_vs.shape[0] <= vs.shape[0]

AssertionError:

Using assert is a good technique to build in checks into your code without having to run it and visually inspecting the result. This is also the basis for creating “unit tests” for functions.

Conclusion

Sometimes, you may need to combine various parts or data or multiple data sets depending on the question you are trying to answer. Keep in mind, however, that the data you need for analysis does not necessarily equate to the best shape of data for storage.

The survey data used in the last example came in four separate parts that needed to be merged together. After we merged the tables, a lot of redundant information appeared across the rows. From a data storage and data entry point of view, each of these duplications can lead to errors and data inconsistency. This is what Hadley meant by saying that in tidy data, “each type of observational unit forms a table.”
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Data Normalization

The final point in the original Tidy Data paper stated that for data to be tidy “… each type of observational unit forms a table.” However, usually we need to combine multiple data sets together so we can do an analysis (Chapter 6). But when we think about how to store and manage data in a way where we reduce the amount of duplication and potential for errors, we should try to normalize our data into separate tables so a single fix can propagate when we combine the data together again.

Learning Objectives

[image: Images] Identify the differences between tidy data and data normalization

[image: Images] Apply data subsetting to split data into normalized parts

7.1 Multiple Observational Units in a Table (Normalization)

One of the simplest ways of knowing whether multiple observational units are represented in a table is by looking at each of the rows and taking note of any cells or values that are being repeated from row to row. This is very common in government education administration data, where student demographics are reported for each student for each year the student is enrolled, and in other data sets that track a value over time.

Let’s look again at the Billboard data we cleaned in Section 4.1.2.

import pandas as pd

billboard = pd.read_csv('data/billboard.csv')

billboard_long = billboard.melt(
  id_vars=["year", "artist", "track", "time", "date.entered"],
  var_name="week",
  value_name="rating",
)

print(billboard_long)

       year            artist                    track  time  \
0      2000             2 Pac  Baby Don't Cry (Keep...  4:22
1      2000           2Ge+her  The Hardest Part Of ...  3:15
2      2000      3 Doors Down               Kryptonite  3:53
3      2000      3 Doors Down                    Loser  4:24
4      2000          504 Boyz            Wobble Wobble  3:35
...     ...               ...                      ...  ...
24087  2000       Yankee Grey     Another Nine Minutes  3:10
24088  2000  Yearwood, Trisha          Real Live Woman  3:55
24089  2000   Ying Yang Twins  Whistle While You Tw...  4:19
24090  2000     Zombie Nation            Kernkraft 400  3:30
24091  2000   matchbox twenty                     Bent  4:12

      date.entered  week  rating
0       2000-02-26   wk1    87.0
1       2000-09-02   wk1    91.0
2       2000-04-08   wk1    81.0
3       2000-10-21   wk1    76.0
4       2000-04-15   wk1    57.0
...            ...   ...     ...
24087   2000-04-29  wk76     NaN
24088   2000-04-01  wk76     NaN
24089   2000-03-18  wk76     NaN
24090   2000-09-02  wk76     NaN
24091   2000-04-29  wk76     NaN

[24092 rows x 7 columns]

Suppose we subset the data based on a particular track:

print(billboard_long.loc[billboard_long.track == 'Loser'])

       year        artist  track  time date.entered  week  rating
3      2000  3 Doors Down  Loser  4:24   2000-10-21   wk1    76.0
320    2000  3 Doors Down  Loser  4:24   2000-10-21   wk2    76.0
637    2000  3 Doors Down  Loser  4:24   2000-10-21   wk3    72.0
954    2000  3 Doors Down  Loser  4:24   2000-10-21   wk4    69.0
1271   2000  3 Doors Down  Loser  4:24   2000-10-21   wk5    67.0
...     ...           ...  ...     ...          ...   ...     ...
22510  2000  3 Doors Down  Loser  4:24   2000-10-21   wk72    NaN
22827  2000  3 Doors Down  Loser  4:24   2000-10-21   wk73    NaN
23144  2000  3 Doors Down  Loser  4:24   2000-10-21   wk74    NaN
23461  2000  3 Doors Down  Loser  4:24   2000-10-21   wk75    NaN
23778  2000  3 Doors Down  Loser  4:24   2000-10-21   wk76    NaN

[76 rows x 7 columns]

We can see that this table actually holds two types of data: the track information and the weekly ranking. It would be better to store the track information in a separate table. This way, the information stored in the year, artist, track, and time columns would not be repeated in the data set. This consideration is particularly important if the data is manually entered. Repeating the same values over and over during data entry increases the risk of inconsistent data.

We can place the year, artist, track, and time in a new dataframe, with each unique set of values being assigned a unique ID. We can then use this unique ID in a second dataframe that represents a date entered, song, date, week number, and ranking. This entire process can be thought of as reversing the steps in concatenating and merging data described in Chapter 6.

billboard_songs = billboard_long[
    ["year", "artist", "track", "time"]
]
print(billboard_songs.shape)

(24092, 4)

We know there are duplicate entries in this dataframe, so we need to drop the duplicate rows.

billboard_songs = billboard_songs.drop_duplicates()
print(billboard_songs.shape)

(317, 4)

We can then assign a unique value to each row of data. There are many ways you could do this, there we take the index value and add 1 so it doesn’t start with 0.

billboard_songs['id'] = billboard_songs.index + 1
print(billboard_songs)

     year            artist                    track  time   id
0    2000             2 Pac  Baby Don't Cry (Keep...  4:22    1
1    2000           2Ge+her  The Hardest Part Of ...  3:15    2
2    2000           3 Doors          Down Kryptonite  3:53    3
3    2000           3 Doors               Down Loser  4:24    4
4    2000          504 Boyz            Wobble Wobble  3:35    5
..    ...               ...                      ...   ...  ...
312  2000       Yankee Grey     Another Nine Minutes  3:10  313
313  2000  Yearwood, Trisha          Real Live Woman  3:55  314
314  2000   Ying Yang Twins  Whistle While You Tw...  4:19  315
315  2000     Zombie Nation            Kernkraft 400  3:30  316
316  2000   matchbox twenty                     Bent  4:12  317

[317 rows x 5 columns]

Now that we have a separate dataframe about songs, we can use the newly created id column to match a song to its weekly ranking.

# Merge the song dataframe to the original data set
billboard_ratings = billboard_long.merge(
    billboard_songs, on=["year", "artist", "track", "time"]
)
print(billboard_ratings.shape)

(24092, 8)

print(billboard_ratings)

       year           artist                    track  time  \
0      2000            2 Pac  Baby Don't Cry (Keep...  4:22
1      2000            2 Pac  Baby Don't Cry (Keep...  4:22
2      2000            2 Pac  Baby Don't Cry (Keep...  4:22
3      2000            2 Pac  Baby Don't Cry (Keep...  4:22
4      2000            2 Pac  Baby Don't Cry (Keep...  4:22
...     ...              ...                      ...   ...
24087  2000  matchbox twenty                     Bent  4:12
24088  2000  matchbox twenty                     Bent  4:12
24089  2000  matchbox twenty                     Bent  4:12
24090  2000  matchbox twenty                     Bent  4:12
24091  2000  matchbox twenty                     Bent  4:12

      date.entered  week  rating  id
0       2000-02-26   wk1  87.0     1
1       2000-02-26   wk2  82.0     1
2       2000-02-26   wk3  72.0     1
3       2000-02-26   wk4  77.0     1
4       2000-02-26   wk5  87.0     1
...            ...   ...   ...   ...
24087   2000-04-29  wk72   NaN   317
24088   2000-04-29  wk73   NaN   317
24089   2000-04-29  wk74   NaN   317
24090   2000-04-29  wk75   NaN   317
24091   2000-04-29  wk76   NaN   317

[24092 rows x 8 columns]

Finally, we subset the columns to the ones we want in our ratings dataframe.

billboard_ratings = billboard_ratings[
     ["id", "date.entered", "week", "rating"]
]
print(billboard_ratings)

        id date.entered  week  rating
0        1   2000-02-26   wk1    87.0
1        1   2000-02-26   wk2    82.0
2        1   2000-02-26   wk3    72.0
3        1   2000-02-26   wk4    77.0
4        1   2000-02-26   wk5    87.0
...    ...          ...   ...     ...
24087  317   2000-04-29  wk72     NaN
24088  317   2000-04-29  wk73     NaN
24089  317   2000-04-29  wk74     NaN
24090  317   2000-04-29  wk75     NaN
24091  317   2000-04-29  wk76     NaN

[24092 rows x 4 columns]

Conclusion

This chapter explored how we can reduce the amount of duplicate information in data for efficient data storage. Data normalization can be thought of as the opposite process of preparing data for analysis, visualization, and model fitting. But typically you will need to combine multiple normalized data sets together into a tidy data set.
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Groupby Operations: Split-Apply-Combine

Grouped operations are a powerful way to aggregate, transform, and filter data. They rely on the mantra of “split–apply–combine”:

1. Data is split into separate parts based on key(s).

2. A function is applied to each part of the data.

3. The results from each part are combined to create a new data set.

This is a powerful concept because parts of your original data can be split up into independent parts to perform a calculation. If you worked with databases in the past, then you should recognize that the Pandas .groupby() works just like the SQL GROUP BY. The split–apply–combine concept is also heavily used in “big data” systems that use distributed computing, with the data being split into independent parts and dispatched to a separate server where a function is applied, and the results are then combined.

The techniques shown in this chapter can all be done without using the .groupby() method. For example:

[image: Images] Aggregation can be done by using conditional subsetting on a dataframe

[image: Images] Transformation can be done by passing a column into a separate function

[image: Images] Filtering can be done with conditional subsetting

However, when you work with your data using .groupby() statements, your code can be faster, you have greater flexibility when you want to create multiple groups, and you can more readily work with larger data sets on distributed or parallel systems.

Learning Objectives

[image: Images] Understand what grouped data is

[image: Images] Calculate summaries of data using .groupby() operations

[image: Images] Perform aggregation, transformation, and filtering operations on grouped data

[image: Images] Separate data by groups for separate calculations

8.1 Aggregate

Aggregation is the process of taking multiple values and returning a single value. Calculating an arithmetic mean is an example, as multiple values are averaged to produce a single value.

8.1.1 Basic One-Variable Grouped Aggregation

Section 1.4.1 showed how to calculate grouped means using the gapminder data set. We calculated the average life expectancy for each year of the data and plotted it. This is an example of using group-by operations for data aggregation; that is, we used the .groupby() method to calculate a summary statistic, the mean, for all the values in each year.

Aggregation may sometimes be referred to as summarization. Both terms mean that some form of data reduction is involved. For example, when you calculate a summary statistic, such as the mean, you are taking multiple values and replacing them with a single value. The amount of data is now smaller.

import pandas as pd
df = pd.read_csv('data/gapminder.tsv', sep='\t')

# calculate the average life expectancy for each year
avg_life_exp_by_year = df.groupby('year')["lifeExp"].mean()

print(avg_life_exp_by_year)

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

Groupby statements can be thought of as creating a subset of each unique value of a column (or unique pairs from columns). For example, we could get a list of unique values in the column.

# get a list of unique years in the data
years = df.year.unique()
print(years)

[1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007]

We can go through each of the years and subset the data.

# subset the data for the year 1952
y1952 = df.loc[df.year == 1952, :]
print(y1952)

                 country continent  year  lifeExp       pop  \
0            Afghanistan      Asia  1952   28.801   8425333
12               Albania    Europe  1952   55.230   1282697
24               Algeria    Africa  1952   43.077   9279525
36                Angola    Africa  1952   30.015   4232095
48             Argentina  Americas  1952   62.485  17876956
...                  ...       ...   ...      ...       ...
1644             Vietnam      Asia  1952   40.412  26246839
1656  West Bank and Gaza      Asia  1952   43.160   1030585
1668         Yemen, Rep.      Asia  1952   32.548   4963829
1680              Zambia    Africa  1952   42.038   2672000
1692            Zimbabwe    Africa  1952   48.451   3080907

        gdpPercap
0      779.445314
12    1601.056136
24    2449.008185
36    3520.610273
48    5911.315053
...           ...
1644   605.066492
1656  1515.592329
1668   781.717576
1680  1147.388831
1692   406.884115

[142 rows x 6 columns]

Finally, we can perform a function on the subset data. Here we take the mean of the lifeExp values.

y1952_mean = y1952["lifeExp"].mean()
print(y1952_mean)

49.057619718309866

The .groupby() method essentially repeats this process for every year column (i.e., splits the data), calculates the mean value (i.e., applies a function), and conveniently returns all the results in a single dataframe (i.e., combines the values together).

Of course, mean is not the only type of aggregation function you can use. There are many built-in methods in Pandas you can use with the .groupby() method.

8.1.2 Built-In Aggregation Methods

Table 8.1 provides a non-exclusive list of built-in Pandas methods you can use to aggregate your data.


Table 8.1 Methods and Functions That Can Be Used With .groupby()

[image: Images]



For example, we can calculate multiple summary statistics simultaneously with .describe().

# group by continent and describe each group
continent_describe = df.groupby('continent')["lifeExp"].describe()
print(continent_describe)

           count       mean        std     min       25%      50%  \
continent
Africa     624.0  48.865330   9.150210  23.599  42.37250  47.7920
Americas   300.0  64.658737   9.345088  37.579  58.41000  67.0480
Asia       396.0  60.064903  11.864532  28.801  51.42625  61.7915
Europe     360.0  71.903686   5.433178  43.585  69.57000  72.2410
Oceania     24.0  74.326208   3.795611  69.120  71.20500  73.6650

                75%     max
continent
Africa     54.41150  76.442
Americas   71.69950  80.653
Asia       69.50525  82.603
Europe     75.45050  81.757
Oceania    77.55250  81.235

8.1.3 Aggregation Functions

You can also use an aggregation function that is not listed in the “Pandas Method” column in Table 8.1. Instead of directly calling the aggregation method, you can call the .agg() or .aggregate() method, and pass the aggregation function you want in there. When using .agg() or .aggregate(), you will use the functions listed in the “Numpy/Scipy Function” column in Table 8.1.


Note

The .agg() method is an alias for .aggregate(). The Pandas documentation suggests you use the alias, .agg(), over the fully spelled out method.



8.1.3.1 Functions From Other Libraries

We can use the mean() function from the numpy library by passing the function into the .agg() method.

import numpy as np

# calculate the average life expectancy by continent
# but use the np.mean function
cont_le_agg = df.groupby('continent')["lifeExp"].agg(np.mean)

print(cont_le_agg)

continent
Africa      48.865330
Americas    64.658737
Asia        60.064903
Europe      71.903686
Oceania     74.326208
Name: lifeExp, dtype: float64


Note

When we pass in the function into .agg(), we only need the actual function object, we do not need to “call” the function. That’s why we write np.mean and not np.mean(). This is similar to when we called .apply() in Chapter 5.



8.1.3.2 Custom User Functions

Sometimes we may want to perform a calculation that is not provided by Pandas or another library. We can write our own function that performs the calculation we want and use it in .agg() as well.

Let’s create our own mean function. Recall the mean function:

[image: Images]

def my_mean(values):
  """My version of calculating a mean"""
  # get the total number of numbers for the denominator
  n = len(values)

  # start the sum at 0
  sum = 0
  for value in values:
      # add each value to the running sum
      sum += value

  # return the summed values divided by the number of values
  return sum / n

Note that the function we wrote takes only one parameter, values. What gets passed into the function, however, is the entire series of values. This is why we need to iterate through the values to take the sum.

Also, we could have calculated the sum in the function by using values.sum(), which can actually handle missing values better than the way the for loop is currently written. See Chapter 5 for a review of these concepts.

We can pass our custom function straight into the .agg() or .aggregate() method with my_mean.

# use our custom function into agg
agg_my_mean = df.groupby('year')["lifeExp"].agg(my_mean)

print(agg_my_mean)

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

Finally, we can write functions that take multiple parameters. As long as the first parameter takes the series of values from the dataframe, you can pass the other arguments as keywords into .agg() or .aggregate().

In the following example, we will calculate the global average life expectancy, diff_value, and subtract it from each grouped value.

def my_mean_diff(values, diff_value):
    """Difference between the mean and diff_value
    """
    n = len(values)
    sum = 0
    for value in values:
        sum += value
    mean = sum / n
    return(mean - diff_value)

# calculate the global average life expectancy mean
global_mean = df["lifeExp"].mean()
print(global_mean)

59.474439366197174

# custom aggregation function with multiple parameters
agg_mean_diff = (
  df
  .groupby("year")
  ["lifeExp"]
  .agg(my_mean_diff, diff_value=global_mean)
)

print(agg_mean_diff)

year
1952   -10.416820
1957    -7.967038
1962    -5.865190
1967    -3.796150
1972    -1.827053
          ...
1987     3.738173
1992     4.685899
1997     5.540237
2002     6.220483
2007     7.532983
Name: lifeExp, Length: 12, dtype: float64

8.1.4 Multiple Functions Simultaneously

When we want to calculate multiple aggregation functions, we can pass the individual functions into .agg() or .aggregate() as a Python list. Examples of functions you can use here are listed in the “Numpy/Scipy Function” column in Table 8.1.

# calculate the count, mean, std of the lifeExp by continent
gdf = (
  df
  .groupby("year")
  ["lifeExp"]
  .agg([np.count_nonzero, np.mean, np.std])
)

print(gdf)

      count_nonzero       mean        std
year
1952            142  49.057620  12.225956
1957            142  51.507401  12.231286
1962            142  53.609249  12.097245
1967            142  55.678290  11.718858
1972            142  57.647386  11.381953
...             ...        ...        ...
1987            142  63.212613  10.556285
1992            142  64.160338  11.227380
1997            142  65.014676  11.559439
2002            142  65.694923  12.279823
2007            142  67.007423  12.073021

[12 rows x 3 columns]

8.1.5 Use a dict in .agg() / .aggregate()

There are some other ways you can apply functions in the .agg() and .aggregate() methods. For example, you can pass .agg() a Python dictionary. However, the results will differ depending on whether you are aggregating directly on a DataFrame or on a Series object.

8.1.5.1 On a DataFrame

When specifying a dict on a grouped DataFrame, the keys are the columns of the DataFrame, and the values are the functions used in the aggregated calculation. This approach allows you to group one or more variables and use a different aggregation function on different columns simultaneously.

# use a dictionary on a dataframe to agg different columns
# for each year, calculate the
# average lifeExp, median pop, and median gdpPercap
gdf_dict = df.groupby("year").agg(

  {
    "lifeExp": "mean",
    "pop": "median",
    "gdpPercap": "median"
  }
)

print(gdf_dict)

        lifeExp         pop    gdpPercap
year
1952  49.057620   3943953.0  1968.528344
1957  51.507401   4282942.0  2173.220291
1962  53.609249   4686039.5  2335.439533
1967  55.678290   5170175.5  2678.334740
1972  57.647386   5877996.5  3339.129407
...         ...         ...          ...
1987  63.212613   7774861.5  4280.300366
1992  64.160338   8688686.5  4386.085502
1997  65.014676   9735063.5  4781.825478
2002  65.694923  10372918.5  5319.804524
2007  67.007423  10517531.0  6124.371108

[12 rows x 3 columns]

8.1.5.2 On a Series

In the past, passing a dict into a Series after a .groupby() allowed you to directly calculate aggregate statistics as the returned value, with the key of the dict being the new column name. However, this notation is not consistent with the behavior when dicts are passed into grouped DataFrames, as shown in the example in Section 8.1.5.1. To have user-defined column names in the output of a grouped series calculation, you need to rename those columns after the fact.

gdf = (
  df
  .groupby("year")
  ["lifeExp"]
  .agg(
    [
      np.count_nonzero,
      np.mean,
      np.std,
    ]
  )
  .rename(
    columns={
      "count_nonzero": "count",
      "mean": "avg",
      "std": "std_dev",
    }
  )
  .reset_index() # return a flat dataframe
)

print(gdf)

    year  count        avg    std_dev
0   1952    142  49.057620  12.225956
1   1957    142  51.507401  12.231286
2   1962    142  53.609249  12.097245
3   1967    142  55.678290  11.718858
4   1972    142  57.647386  11.381953
..   ...    ...        ...        ...
7   1987    142  63.212613  10.556285
8   1992    142  64.160338  11.227380
9   1997    142  65.014676  11.559439
10  2002    142  65.694923  12.279823
11  2007    142  67.007423  12.073021

[12 rows x 4 columns]

8.2 Transform

When we transform data, we pass values from our dataframe into a function. The function then “transforms” the data. Unlike .agg(), which can take multiple values and return a single (aggregated) value, .transform() takes multiple values and returns a one-to-one transformation of the values. That is, it does not reduce the amount of data.

8.2.1 Z-Score Example

Let’s calculate the z-score of our life expectancy data by year. The z-score identifies the number of standard deviations from the mean of our data. It centers our data around 0, with a standard deviation of 1. This technique standardizes our data and makes it easier to compare different variables with different units to each other.

Here’s the formula for calculating z-score:
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[image: Images] x is a data point in our data set

[image: Images] µ is the average of our data set, as calculated by Equation 8.1

[image: Images] σ is the standard deviation, as calculated by Equation 8.3
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Let’s write a Python function that calculates a z-score.

def my_zscore(x):
  '''Calculates the z-score of provided data
  'x' is a vector or series of values
  '''
  return((x - x.mean()) / x.std())

Now we can use this function to .transform() our data by group.

transform_z = df.groupby('year')["lifeExp"].transform(my_zscore)

print(transform_z)

0      -1.656854
1      -1.731249
2      -1.786543
3      -1.848157
4      -1.894173
          ...
1699   -0.081621
1700   -0.336974
1701   -1.574962
1702   -2.093346
1703   -1.948180
Name: lifeExp, Length: 1704, dtype: float64

Note the shape of our original dataframe, and that of the transform_z value. Both have the same number of rows and data.

# note the number of rows in our data
print(df.shape)

(1704, 6)

# note the number of values in our transformation
print(transform_z.shape)

(1704,)

The scipy library has its own zscore() function. Let’s use its zscore() function in a .groupby() .transform() and compare it to what happens when we do not use .groupby().

from scipy.stats import zscore

# calculate a grouped zscore

sp_z_grouped = df.groupby('year')["lifeExp"].transform(zscore)

# calculate a nongrouped zscore
sp_z_nogroup = zscore(df["lifeExp"])

Notice that not all of the zscore() values are the same.

# grouped z-score
print(transform_z.head())

0   -1.656854
1   -1.731249
2   -1.786543
3   -1.848157
4   -1.894173
Name: lifeExp, dtype: float64

# grouped z-score using scipy
print(sp_z_grouped.head())

0   -1.662719
1   -1.737377
2   -1.792867
3   -1.854699
4   -1.900878
Name: lifeExp, dtype: float64

# nongrouped z-score
print(sp_z_nogroup[:5])

0   -2.375334
1   -2.256774
2   -2.127837
3   -1.971178
4   -1.811033
Name: lifeExp, dtype: float64

Our grouped results are similar. However, when we calculate the z-score outside the .groupby(), we get the z-score calculated on the entire data set, not broken out by group.

8.2.2 Missing Value Example

Chapter 9 covers missing values and explored how we can fill in missing values. In the Ebola data set example in that chapter, it made more sense to fill in the missing data using the .interpolate() method, or forward/backward filling our data.

In certain data sets, filling the missing values with the mean of the column could also make sense. At other times, however, it may make more sense to fill in missing data based on a particular group. Let’s work with the tips data set that comes from the seaborn library.

import seaborn as sns
import numpy as np

# set the seed so results are deterministic
np.random.seed(42)

# sample 10 rows from tips
tips_10 = sns.load_dataset("tips").sample(10)

# randomly pick 4 'total_bill' values and turn them into missing
tips_10.loc[
    np.random.permutation(tips_10.index)[:4],
    "total_bill"
] = np.NaN

print(tips_10)

    total_bill   tip     sex smoker   day    time  size
24       19.82  3.18    Male     No   Sat  Dinner     2
6         8.77  2.00    Male     No   Sun  Dinner     2
153        NaN  2.00    Male     No   Sun  Dinner     4
211        NaN  5.16    Male    Yes   Sat  Dinner     4
198        NaN  2.00  Female    Yes  Thur   Lunch     2
176        NaN  2.00    Male    Yes   Sun  Dinner     2
192      28.44  2.56    Male    Yes  Thur   Lunch     2
124      12.48  2.52  Female     No  Thur   Lunch     2
9        14.78  3.23    Male     No   Sun  Dinner     2
101      15.38  3.00  Female    Yes   Fri  Dinner     2

Chapter 9 also shows how you can use the .fillna() method to fill in the missing values. However, we may not want to simply fill the missing values with the mean of total_bill. Perhaps the Male and Female values in the sex column have different spending habits, or perhaps the total_bill values differ between time of day (time), or and size of the table. These are all valid concerns when processing our data.

We can use the .groupby() method to calculate a statistic to fill in missing values. Instead of using .agg(), we use the .transform() method. First, let’s count the non-missing values by sex.

count_sex = tips_10.groupby('sex').count()
print(count_sex)

        total_bill tip smoker day time size
sex
Male             4   7      7   7    7    7
Female           2   3      3   3    3    3

This result gives us the number of non-missing values for each value of sex in each column. We have three missing values for Male, and one missing value for Female. Now let’s calculate a grouped average, and use the grouped average to fill in the missing values.

def fill_na_mean(x):
  """Returns the average of a given vector"""
  avg = x.mean()
  return x.fillna(avg)


# calculate a mean 'total_bill' by 'sex'
total_bill_group_mean = (
  tips_10
  .groupby("sex")
  .total_bill
  .transform(fill_na_mean)
)

# assign to a new column in the original data
# you can also replace the original column by using 'total_bill'
tips_10["fill_total_bill"] = total_bill_group_mean

If we just look at the two total_bill columns, we see that different values were filled in for the NaN missing values.

print(tips_10[['sex', 'total_bill', 'fill_total_bill']])

        sex  total_bill  fill_total_bill
24     Male       19.82          19.8200
6      Male        8.77           8.7700
153    Male         NaN          17.9525
211    Male         NaN          17.9525
198  Female         NaN          13.9300
176    Male         NaN          17.9525
192    Male       28.44          28.4400
124  Female       12.48          12.4800
9      Male       14.78          14.7800
101  Female       15.38          15.3800

8.3 Filter

The last type of action you can perform with the .groupby() method is .filter(). This allows you to split your data by keys, and then perform some kind of boolean subsetting on the data. As with all the examples for .groupby(), you can accomplish the same thing by using regular subsetting, as described in Section 1.3 and Section 2.4.1. Let’s use the full tips data set and look at the number of observations for the various size values.

# load the tips data set
tips = sns.load_dataset('tips')

# note the number of rows in the original data
print(tips.shape)

(244, 7)

# look at the frequency counts for the table size
print(tips['size'].value_counts())

2    156
3     38
4     37
5      5
1      4
6      4
Name: size, dtype: int64

The output shows that table sizes of 1, 5, and 6 are infrequent. Depending on your needs, you may want to filter those data points out. In this example, we want each group to consist of 30 or more observations.

To accomplish this goal, we can use the .filter() method on a grouped operation.

# filter the data such that each group has more than 30 observations
tips_filtered = (
  tips
  .groupby("size")
  .filter(lambda x: x["size"].count() >= 30)
)

The output shows that our data set was filtered down.

print(tips_filtered.shape)

(231, 7)

print(tips_filtered['size'].value_counts())

2    156
3     38
4     37
Name: size, dtype: int64

8.4 The pandas.core.groupby. DataFrameGroupBy object

The .aggregate(), .transform(), and .filter() methods are commonly used ways of working with grouped objects in Pandas. In this section, we will investigate some of the inner workings of grouped objects. The .groupby() documentation is an excellent resource for some of the more nuanced features of .groupby().1

1. groupby() documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.xhtml

8.4.1 Groups

Throughout this chapter, we’ve directly chained .agg(), .transform(), or .filter() after the .groupby(). However, we can actually save the results of .groupby() before we perform those other methods. We will start with the subsetted tips data set.

tips_10 = sns.load_dataset('tips').sample(10, random_state=42)
print(tips_10)

    total_bill   tip     sex  smoker   day    time  size
24       19.82  3.18    Male      No   Sat  Dinner     2
6         8.77  2.00    Male      No   Sun  Dinner     2
153      24.55  2.00    Male      No   Sun  Dinner     4
211      25.89  5.16    Male     Yes   Sat  Dinner     4
198      13.00  2.00  Female     Yes  Thur   Lunch     2
176      17.89  2.00    Male     Yes   Sun  Dinner     2
192      28.44  2.56    Male     Yes  Thur   Lunch     2
124      12.48  2.52  Female      No  Thur   Lunch     2
9        14.78  3.23    Male      No   Sun  Dinner     2
101      15.38  3.00  Female     Yes   Fri  Dinner     2

We can choose to save just the groupby object without running any other .agg(), .transform(), or .filter() method on it.

# save just the grouped object
grouped = tips_10.groupby('sex')

# note that we just get back the object and its memory location
print(grouped)

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x15ed37880>

When we try to print out the grouped result, we get a memory reference back and the data type is a Pandas DataFrameGroupBy object. Under the hood, nothing has been actually calculated yet, because we never performed an action that requires a calculation. If we want to actually see the calculated groups, we can call the groups attribute.

# see the actual groups of the groupby
# it returns only the index
print(grouped.groups)

{'Male': [24, 6, 153, 211, 176, 192, 9], 'Female': [198, 124, 101]}

Even when we ask for the groups from our grouped object, we get only the index of the dataframe back. Think of this index as indicating the row numbers. It is intended mainly to optimize performance. Again, we haven’t calculated anything yet.

This approach does allow you to save just the grouped result. You could then perform multiple .agg(), .transform(), or .filter() operations without having to process the .groupby() statement again.

8.4.2 Group Calculations Involving Multiple Variables

One of the nice things about Python is that it follows the EAFP mantra: It is “easier to ask for forgiveness than for permission.” Throughout the chapter, we have been performing .groupby() calculations on a single column. If we specify the calculation we want right after the .groupby(), however, Python will perform the calculation on all the columns it can and silently drop the rest.

Here’s an example of a grouped mean on all the columns by sex.

# calculate the mean on relevant columns
avgs = grouped.mean()
print(avgs)

        total_bill       tip      size
sex
Male         20.02  2.875714  2.571429
Female       13.62  2.506667  2.000000

As you can see, not all the columns reported a mean.

# list all the columns
print(tips_10.columns)

Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'],
 dtype='object')

The smoker, day, and time columns were not returned in the results those columns do not contain numeric values, rather, they contain categorical values. To use the time column as an example, there is no arithmetic mean for the terms Dinner and Lunch.

8.4.3 Selecting a Group

If we want to extract a particular group, we can use the .get_group() method, and pass in the group that we want. For example, if we wanted the Female values:

# get the 'Female' group
female = grouped.get_group('Female')
print(female)

     total_bill   tip     sex smoker   day    time  size
198       13.00  2.00  Female    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2

8.4.4 Iterating Through Groups

Another benefit of saving just the groupby object is that you can then iterate through the groups individually. There might be times when it’s easier to conceptualize a question using a for loop, rather than trying to formulate an .agg(), .transform(), or .filter() method. Sometimes this might be the only way to do the task. Other times, it might be the way to get the task done for now, and you can work on optimizing the solution later.

We can iterate through our grouped values just like any other container in Python using a for loop.

for sex_group in grouped:
    print(sex_group)

('Male',      total_bill   tip  sex  smoker  day       time  size
24        19.82  3.18  Male     No   Sat     Dinner    2
6          8.77  2.00  Male     No   Sun     Dinner    2
153       24.55  2.00  Male     No   Sun     Dinner    4
211       25.89  5.16  Male     Yes  Sat     Dinner    4
176       17.89  2.00  Male     Yes  Sun     Dinner    2
192       28.44  2.56  Male     Yes  Thur    Lunch     2
9         14.78  3.23  Male     No   Sun     Dinner    2)
('Female',      total_bill   tip     sex smoker   day   time  size
198       13.00  2.00  Female   Yes  Thur    Lunch     2
124       12.48  2.52  Female   No   Thur    Lunch     2
101       15.38  3.00  Female   Yes  Fri     Dinner    2)

If you try to get just the first index from the grouped object, you will get an error message. This object is still a pandas.core.groupby.DataFrameGroupBy object, rather than a real Pandas container.

# you can't really get the 0 element from the grouped object
print(grouped[0])

KeyError: 'Column not found: 0'

For now, let’s modify the for loop to just show the first element, along with some of the things we get when we loop over the grouped object.

for sex_group in grouped:
    # get the type of the object (tuple)
    print(f'the type is: {type(sex_group)}\n')

    # get the length of the object (2 elements)
    print(f'the length is: {len(sex_group)}\n')

    # get the first element
    first_element = sex_group[0]
    print(f'the first element is: {first_element}\n')

    # the type of the first element (string)
    print(f'it has a type of:  {type(sex_group[0])}\n')

    # get the second element
    second_element = sex_group[1]
    print(f'the second element is:\n{second_element}\n')

    # get the type of the second element (dataframe)
    print(f'it has a type of:  {type(second_element)}\n')

    # print what we have
    print(f'what we have:')
    print(sex_group)

    # stop after first iteration
    break

the type is: <class 'tuple'>

the length is: 2

the first element is: Male

it has a type of: <class 'str'>

the second element is:
     total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur  Lunch      2
9         14.78  3.23  Male     No   Sun  Dinner     2

it has a type of: <class 'pandas.core.frame.DataFrame'>

what we have:
('Male',      total_bill   tip  sex  smoker  day     time  size
24        19.82  3.18  Male     No   Sat     Dinner  2
6          8.77  2.00  Male     No   Sun     Dinner  2
153       24.55  2.00  Male     No   Sun     Dinner  4
211       25.89  5.16  Male     Yes  Sat     Dinner  4
176       17.89  2.00  Male     Yes  Sun     Dinner  2
192       28.44  2.56  Male     Yes  Thur    Lunch   2
9         14.78  3.23  Male     No   Sun     Dinner  2)

We have a two-element tuple in which the first element is a str (string) that represents the Male key, and the second element is a DataFrame of the Male data.

If you prefer, you can forgo all the techniques introduced in this chapter and iterate through your grouped values in this manner to perform your calculations. Again, there may be times when this is the only way to get something done. Perhaps you have a complicated condition you want to check for each group, or you want to write out each group into separate files. This option is available to you if you need to iterate through the groups one at a time.

8.4.5 Multiple Groups

So far in this chapter, we have included one variable in the .groupby() method. In fact, we can add multiple variables during the .groupby() process. Section 1.4.1 briefly showed such a case.

Let’s say we want to calculate the mean of our tips data by sex, time of day (time), and day of week (day). We can pass in ['sex', 'time'] as a Python list instead of the single string we have been using.

# mean by sex and time
bill_sex_time = tips_10.groupby(['sex', 'time'])

group_avg = bill_sex_time.mean()

8.4.6 Flattening the Results (.reset_index())

The final topic that will be covered in this section is the results from the .groupby() statement. Let’s look at the type of the group_avg we just calculated.

# type of the group_avg
print(type(group_avg))

<class 'pandas.core.frame.DataFrame'>

We have a DataFrame, but the results look a little strange: We have what appear to be empty cells in the dataframe.

If we look at the columns, we get what we expect.

print(group_avg.columns)

Index(['total_bill', 'tip', 'size'], dtype='object')

However, more interesting things happen when we look at the index.

print(group_avg.index)

MultiIndex([(  'Male',  'Lunch'),
            (  'Male', 'Dinner'),
            ('Female',  'Lunch'),
            ('Female', 'Dinner')],
           names=['sex', 'time'])

If we like, we can use a MultiIndex. If we want to get a regular flat dataframe back, we can call the .reset_index() method on the results.

group_method = tips_10.groupby(['sex', 'time']).mean().reset_index()
print(group_method)

      sex    time  total_bill       tip      size
0    Male   Lunch   28.440000  2.560000  2.000000
1    Male  Dinner   18.616667  2.928333  2.666667
2  Female   Lunch   12.740000  2.260000  2.000000
3  Female  Dinner   15.380000  3.000000  2.000000

Alternatively, we can use the as_index=False parameter in the .groupby() method (it is True by default).

group_param = tips_10.groupby(['sex', 'time'], as_index=False).mean()
print(group_param)

      sex    time  total_bill       tip      size
0    Male   Lunch   28.440000  2.560000  2.000000
1    Male  Dinner   18.616667  2.928333  2.666667
2  Female   Lunch   12.740000  2.260000  2.000000
3  Female  Dinner   15.380000  3.000000  2.000000

8.5 Working With a MultiIndex

Sometimes, you may want to chain calculations after a .groupby() method. You can always “flatten” the results and then execute another .groupby() statement, but that may not always be the most efficient way of performing the calculation.

We begin with epidemiological simulation data on influenza cases in Chicago (this is a fairly large data set).

# notice that we can even read a compressed zip file of a csv
intv_df = pd.read_csv('data/epi_sim.zip')

print(intv_df)

         ig_type  intervened        pid  rep  sid        tr
0              3          40  294524448    1  201  0.000135
1              3          40  294571037    1  201  0.000135
2              3          40  290699504    1  201  0.000135
3              3          40  288354895    1  201  0.000135
4              3          40  292271290    1  201  0.000135
...          ...          ...       ...  ...  ...       ...
9434648        2          87  345636694    2  201  0.000166
9434649        3          87  295125214    2  201  0.000166
9434650        2          89  292571119    2  201  0.000166
9434651        3          89  292528142    2  201  0.000166
9434652        2          95  291956763    2  201  0.000166

[9434653 rows x 6 columns]


About the Epidemiological Simulation Data Set

This data set comes from a simulation which was run using a program called Indemics. It was developed by the Network Dynamics and Simulation Science Laboratory at Virginia Tech.

The references for the program are:

[image: Images] Bisset KR, Chen J, Deodhar S, Feng X, Ma Y, Marathe MV. Indemics: An interactive high-performance computing framework for data intensive epidemic modeling. ACM Transactions on Modeling and Computer Simulation. 2014; 24(1):10. 1145/2501602. doi:10.1145/2501602.

[image: Images] Deodhar S, Bisset K, Chen J, Ma Y, Marathe MV. Enhancing software capability through integration of distinct software in epidemiological systems. 2nd ACM SIGHIT International Health Informatics Symposium, 2012.

[image: Images] Bisset KR, Chen J, Feng X, Ma Y, Marathe MV. Indemics: An interactive data intensive framework for high performance epidemic simulation. In Proceedings the 24rd International Conference on Conference on Supercomputing. 2010; 233-242.



The data set includes six columns:

[image: Images] ig_type: edge type (type of relationship between two nodes in the network, such as “school” and “work”)

[image: Images] intervened: time in the simulation at which an intervention occurred for a given person (pid)

[image: Images] pid: simulated person’s ID number

[image: Images] rep: replication run (each set of simulation parameters was run multiple times)

[image: Images] sid: simulation ID

[image: Images] tr: transmissibility value of the influenza virus

Let’s count the number of interventions for each replicate, intervention time, and treatment value. Here, we are counting the ig_type arbitrarily. We just need a value to get a count of observations for the groups.

count_only = (
  intv_df
  .groupby(["rep", "intervened", "tr"])
  ["ig_type"]
  .count()
)

print(count_only)

rep  intervened  tr
0    8           0.000166    1
     9           0.000152    3
                 0.000166    1
     10          0.000152    1
                 0.000166    1
                            ..
2    193         0.000135    1
                 0.000152    1
     195         0.000135    1
     198         0.000166    1
     199         0.000135    1
Name: ig_type, Length: 1196, dtype: int64

Now that we’ve done a .groupby() .count(), we can perform an additional .groupby() that calculates the average value. However, our initial .groupby() method does not return a regular flat dataframe.

print(type(count_only))

<class 'pandas.core.series.Series'>

Instead, the results take the form of a multi-index series. If we want to do another .groupby() operation, we have to pass in the levels parameter to refer to the multi-index levels. Here we pass in [0, 1, 2] for the first, second, and third index levels, respectively.

count_mean = count_only.groupby(level=[0, 1, 2]).mean()
print(count_mean.head())

rep  intervened  tr
0    8           0.000166     1.0
     9           0.000152     3.0
                 0.000166     1.0
     10          0.000152     1.0
                 0.000166     1.0
Name: ig_type, dtype: float64

We can combine all of these operations in a single command.

count_mean = (
    intv_df
    .groupby(["rep", "intervened", "tr"])["ig_type"]
    .count()
    .groupby(level=[0, 1, 2])
    .mean()
)

Figure 8.1 shows our results.

import seaborn as sns
import matplotlib.pyplot as plt


fig = sns.lmplot(
   data=count_mean.reset_index(),
   x="intervened",
   y="ig_type",
   hue="rep",
   col="tr",
   fit_reg=False,
   palette="viridis"
)

plt.show()


Figure 8.1 Grouped counts and mean

[image: Images]




Figure 8.2 Grouped cumulative counts. The plot shows that one of the replicates did not run in our simulation.

[image: Images]



The previous example showed how we can pass in a level to perform an additional .groupby() calculation. It used integer positions, but we can also pass in the string of the level to make our code a bit more readable.

Here, instead of looking at the .mean(), we will be using .cumsum() for the cumulative sum.

Figure 8.2 shows our results.

cumulative_count = (
  intv_df
  .groupby(["rep", "intervened", "tr"])
  ["ig_type"]
  .count()
  .groupby(level=["rep"])
  .cumsum()
  .reset_index()
)

fig = sns.lmplot(
  data=cumulative_count,
  x="intervened",
  y="ig_type",
  hue="rep",
  col="tr",
  fit_reg=False,
  palette="viridis"
)
plt.show()

Conclusion

The .groupby() statement follows the pattern of “split–apply–combine.”” It is a powerful concept that is not necessarily new to data analytics, but can help you think about your data and pipelines in a different way that will scale more readily to “big data” and “distributed” systems.

I urge you to check out the documentation for the .groupby() method and the general documentation for .groupby(), as there are many more complex things you can do with groupby statements. The material covered in this chapter should suffice for the vast majority of needs and use cases.



Part III

Data Types

Chapter 9 Missing Data

Chapter 10 Data Types

Chapter 11 Strings and Text Data

Chapter 12 The datetime Data Type

After we have all the data we want, we can go into processing different parts of it. Working with missing data (Chapter 9), changing the data type stored in columns (Chapter 10), and working with string (Chapter 11) and date-time (Chapter 12) data are all common data types we need to be able to work with while cleaning and munging our data.



9

Missing Data

Rarely will you be given a data set without any missing values. There are many representations of missing data. In databases, they are NULL values; certain programming languages use NA; and depending on where you get your data, missing values can be an empty string, ", or even numeric values such as 88 or 99. Pandas displays missing values as NaN.

Learning Objectives

[image: Images] Identify how missing values are represented in pandas

[image: Images] Recognize potential ways data can go missing in data processing

[image: Images] Use different functions to fill in missing values

9.1 What Is a NaN Value?

The NaN value in Pandas comes from numpy. Missing values may be used or displayed in a few ways in Pandas — NaN, NAN, or nan— they are all the same in terms of how you specify a missing (floating point) number, but they are not the same in terms of equality. Appendix I describes how these missing values are imported.

# Just import the numpy missing values
from numpy import NaN, NAN, nan

Missing values are different than other types of data in that they don’t really equal anything, not even to themselves. The data is missing, so there is no concept of equality. NaN is not equivalent to 0 or an empty string, ". This is known as “three-valued logic”.

print(NaN == True)

False

print(NaN == 0)

False

print(NaN == ")

False

print(NaN == NaN)

False

print(NaN == NAN)

False

print(NaN == nan)

False

print(nan == NAN)

False

Pandas has functions to test for missing values, isnull().

import pandas as pd

print(pd.isnull(NaN))

True

print(pd.isnull(nan))

True

print(pd.isnull(NAN))

True

Pandas also has functions for testing non-missing values, notnull().

print(pd.notnull(NaN))

False

print(pd.notnull(42))

True

print(pd.notnull('missing'))

True

9.2 Where Do Missing Values Come From?

We can get missing values when we load in a data set with missing values, or from the data munging process.

9.2.1 Load Data

The survey data we used in Chapter 6 included a data set, visited, that contained missing data. When we loaded the data, Pandas automatically found the missing data cell and gave us a dataframe with the NaN value in the appropriate cell. In the read_csv() function, three parameters relate to reading missing values: na_values, keep_default_na, and na_filter.

The na_values parameter allows you to specify additional missing or NaN values. You can pass in either a Python str (i.e., string) or a list-like object to be automatically coded as missing values when the file is read. Of course, default missing values, such as NA, NaN, or nan, are already available, which is why this parameter is not always used. Some health data may code 99 as a missing value; to specify the use of this value, you would set na_values=[99].

The keep_default_na parameter is a bool (i.e., True or False boolean) that allows you to specify whether any additional values need to be considered as missing. This parameter is True by default, meaning any additional missing values specified with the na_values parameter will be appended to the list of missing values. However, keep_default_na can also be set to keep_default_na=False, which will only use the missing values specified in na_values.

Lastly, na_filter is a bool that will specify whether any values will be read as missing. The default value of na_filter=True means that missing values will be coded as NaN. If we assign na_filter=False, then nothing will be recoded as missing. This parameter can be thought of as a means to turn off all the parameters set for na_values and keep_default_na, but it is more likely to be used when you want to achieve a performance boost by loading in data without missing values.

# set the location for data
visited_file = 'data/survey_visited.csv'

print(pd.read_csv(visited_file))

   ident   site       dated
0    619   DR-1  1927-02-08
1    622   DR-1  1927-02-10
2    734   DR-3  1939-01-07
3    735   DR-3  1930-01-12
4    751   DR-3  1930-02-26
5    752   DR-3         NaN
6    837  MSK-4  1932-01-14
7    844   DR-1  1932-03-22

print(pd.read_csv(visited_file, keep_default_na=False))

   ident   site       dated
0    619   DR-1  1927-02-08
1    622   DR-1  1927-02-10
2    734   DR-3  1939-01-07
3    735   DR-3  1930-01-12
4    751   DR-3  1930-02-26
5    752   DR-3
6    837  MSK-4  1932-01-14
7    844   DR-1  1932-03-22

print(
  pd.read_csv(visited_file, na_values=[""], keep_default_na=False)
)

   ident   site       dated
0    619   DR-1  1927-02-08
1    622   DR-1  1927-02-10
2    734   DR-3  1939-01-07
3    735   DR-3  1930-01-12
4    751   DR-3  1930-02-26
5    752   DR-3         NaN
6    837  MSK-4  1932-01-14
7    844   DR-1  1932-03-22

9.2.2 Merged Data

Chapter 6 showed you how to combine data sets. Some of the examples in that chapter included missing values in the output. If we recreate the merged table from Section 6.4.3, we will see missing values in the merged output.

visited = pd.read_csv('data/survey_visited.csv')
survey = pd.read_csv('data/survey_survey.csv')

print(visited)

   ident   site       dated
0    619   DR-1  1927-02-08
1    622   DR-1  1927-02-10
2    734   DR-3  1939-01-07
3    735   DR-3  1930-01-12
4    751   DR-3  1930-02-26
5    752   DR-3         NaN
6    837  MSK-4  1932-01-14
7    844   DR-1  1932-03-22

print(survey)

    taken person quant  reading
0     619   dyer   rad     9.82
1     619   dyer   sal     0.13
2     622   dyer   rad     7.80
3     622   dyer   sal     0.09
4     734     pb   rad     8.41
..    ...    ...   ...      ...
16    752    roe   sal    41.60
17    837   lake   rad     1.46
18    837   lake   sal     0.21
19    837    roe   sal    22.50
20    844    roe   rad    11.25

[21 rows x 4 columns]

vs = visited.merge(survey, left_on='ident', right_on='taken')
print(vs)

    ident   site       dated  taken person quant  reading
0     619   DR-1  1927-02-08    619   dyer   rad     9.82
1     619   DR-1  1927-02-08    619   dyer   sal     0.13
2     622   DR-1  1927-02-10    622   dyer   rad     7.80
3     622   DR-1  1927-02-10    622   dyer   sal     0.09
4     734   DR-3  1939-01-07    734     pb   rad     8.41
..    ...    ...         ...    ...    ...   ...      ...
16    752   DR-3         NaN    752    roe   sal    41.60
17    837  MSK-4  1932-01-14    837   lake   rad     1.46
18    837  MSK-4  1932-01-14    837   lake   sal     0.21
19    837  MSK-4  1932-01-14    837    roe   sal    22.50
20    844   DR-1  1932-03-22    844    roe   rad    11.25

[21 rows x 7 columns]

9.2.3 User Input Values

The user can also create missing values—for example, by creating a vector of values from a calculation or a manually curated vector. To build on the examples from Section 2.1, we will create our own data with missing values. NaN values are valid for both Series and DataFrame objects.

# missing value in a series
num_legs = pd.Series({'goat': 4, 'amoeba': nan})
print(num_legs)

goat       4.0
amoeba     NaN
dtype: float64

# missing value in a dataframe
scientists = pd.DataFrame(
  {
    "Name": ["Rosaline Franklin", "William Gosset"],
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "missing": [NaN, nan],
  }
)
print(scientists)

                Name    Occupation        Born        Died  missing
0  Rosaline Franklin       Chemist  1920-07-25  1958-04-16      NaN
1     William Gosset  Statistician  1876-06-13  1937-10-16      NaN

You will notice the dtype of the missing column will be a float64. This is because the NaN missing value from numpy is a floating point value.

print(scientists.dtypes)

Name            object
Occupation      object
Born            object
Died            object
missing       float64
dtype: object

You can also assign a column of missing values to a dataframe directly.

# create a new dataframe
scientists = pd.DataFrame(
  {
    "Name": ["Rosaline Franklin", "William Gosset"],
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
  }
)

# assign a column of missing values
scientists["missing"] = nan

print(scientists)

                Name    Occupation        Born        Died  missing
0  Rosaline Franklin       Chemist  1920-07-25  1958-04-16      NaN
1     William Gosset  Statistician  1876-06-13  1937-10-16      NaN

9.2.4 Reindexing

Another way to introduce missing values into your data is to reindex your dataframe. This is useful when you want to add new indices to your dataframe, but still want to retain its original values. A common usage is when the index represents some time interval, and you want to add more dates.

If we wanted to look at only the years from 2000 to 2010 from the Gapminder data plot in Section 1.5, we could perform the same grouped operations, subset the data, and then reindex it.

gapminder = pd.read_csv('data/gapminder.tsv', sep='\t')

life_exp = gapminder.groupby(['year'])['lifeExp'].mean()
print(life_exp)

year
1952    49.057620
1957    51.507401
1962    53.609249
1967    55.678290
1972    57.647386
          ...
1987    63.212613
1992    64.160338
1997    65.014676
2002    65.694923
2007    67.007423
Name: lifeExp, Length: 12, dtype: float64

We can reindex by subsetting the data and use the .reindex() method.

# subset
y2000 = life_exp[life_exp.index > 2000]
print(y2000)

year
2002    65.694923
2007    67.007423
Name: lifeExp, dtype: float64

# reindex
print(y2000.reindex(range(2000, 2010)))

year
2000          NaN
2001          NaN
2002    65.694923
2003          NaN
2004          NaN
2005          NaN
2006          NaN
2007    67.007423
2008          NaN
2009          NaN
Name: lifeExp, dtype: float64

9.3 Working With Missing Data

Now that we know how missing values can be created, let’s see how they behave when we are working with data.

9.3.1 Find and Count Missing Data

One way to look at the number of missing values is to count() them.

ebola = pd.read_csv('data/country_timeseries.csv')

# count the number of non-missing values
print(ebola.count())

Date                   122
Day                    122
Cases_Guinea            93
Cases_Liberia           83
Cases_SierraLeone       87
                      ...
Deaths_Nigeria          38
Deaths_Senegal          22
Deaths_UnitedStates     18
Deaths_Spain            16
Deaths_Mali             12
Length: 18, dtype: int64

You can also subtract the number of non-missing rows from the total number of rows.

num_rows = ebola.shape[0]
num_missing = num_rows - ebola.count()
print(num_missing)

Date                     0
Day                      0
Cases_Guinea            29
Cases_Liberia           39
Cases_SierraLeone       35
                      ...
Deaths_Nigeria          84
Deaths_Senegal         100
Deaths_UnitedStates    104
Deaths_Spain           106
Deaths_Mali            110
Length: 18, dtype: int64

If you want to count the total number of missing values in your data, or count the number of missing values for a particular column, you can use the count_nonzero() function from numpy in conjunction with the .isnull() method.

import numpy as np

print(np.count_nonzero(ebola.isnull()))

1214

print(np.count_nonzero(ebola['Cases_Guinea'].isnull()))

29

Another way to get missing data counts is to use the .value_counts() method on a series. This will print a frequency table of values. If you use the dropna parameter, you can also get a missing value count.

# value counts from the Cases_Guinea column
cnts = ebola.Cases_Guinea.value_counts(dropna=False)
print(cnts)

NaN       29
86.0       3
495.0      2
112.0      2
390.0      2
          ..
1199.0     1
1298.0     1
1350.0     1
1472.0     1
49.0       1
Name: Cases_Guinea, Length: 89, dtype: int64

The results are sorted so you can subset the count vector to just look at the missing values.

# select the values in the Series where the index is a NaN value
print(cnts.loc[pd.isnull(cnts.index)])

NaN    29
Name: Cases_Guinea, dtype: int64

In Python, True values equate to the integer value 1, and False values equate to the integer value 0. We can use this behavior to get the number of missing values by summing up a boolean vector with the .sum() method.

# check if the value is missing, and sum up the results
print(ebola.Cases_Guinea.isnull().sum())

29

9.3.2 Clean Missing Data

There are many different ways we can deal with missing data. For example, we can replace the missing data with another value, fill in the missing data using existing data, or drop the data from our data set.

9.3.2.1 Recode or Replace

We can use the .fillna() method to recode the missing values to another value. For example, suppose we wanted the missing values to be recoded as a 0. When we use .fillna(), we can recode the values to a specific value.

# fill the missing values to 0 and only look at the first 5 columns
print(ebola.fillna(0).iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0      1/5/2015  289        2776.0            0.0            10030.0
1      1/4/2015  288        2775.0            0.0             9780.0
2      1/3/2015  287        2769.0         8166.0             9722.0
3      1/2/2015  286           0.0         8157.0                0.0
4    12/31/2014  284        2730.0         8115.0             9633.0
..          ...  ...           ...            ...                ...
117   3/27/2014    5         103.0            8.0                6.0
118   3/26/2014    4          86.0            0.0                0.0
119   3/25/2014    3          86.0            0.0                0.0
120   3/24/2014    2          86.0            0.0                0.0
121   3/22/2014    0          49.0            0.0                0.0

[122 rows x 5 columns]

9.3.2.2 Forward Fill

We can use built-in methods to fill forward or backward. When we fill data forward, the last known value (from top to bottom) is used for the next missing value. In this way, missing values are replaced with the last known and recorded value.

print(ebola.fillna(method='ffill').iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0      1/5/2015  289        2776.0            NaN            10030.0
1      1/4/2015  288        2775.0            NaN             9780.0
2      1/3/2015  287        2769.0         8166.0             9722.0
3      1/2/2015  286        2769.0         8157.0             9722.0
4    12/31/2014  284        2730.0         8115.0             9633.0
..          ...  ...           ...            ...                ...
117   3/27/2014    5         103.0            8.0                6.0
118   3/26/2014    4          86.0            8.0                6.0
119   3/25/2014    3          86.0            8.0                6.0
120   3/24/2014    2          86.0            8.0                6.0
121   3/22/2014    0          49.0            8.0                6.0

[122 rows x 5 columns]

If a column begins with a missing value, then that data will remain missing because there is no previous value to fill in.

9.3.2.3 Backward Fill

We can also have Pandas fill data backward. When we fill data backward, the newest value (from top to bottom) is used to replace the missing data. In this way, missing values are replaced with the newest value.

print(ebola.fillna(method='bfill').iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0      1/5/2015  289        2776.0         8166.0            10030.0
1      1/4/2015  288        2775.0         8166.0             9780.0
2      1/3/2015  287        2769.0         8166.0             9722.0
3      1/2/2015  286        2730.0         8157.0             9633.0
4    12/31/2014  284        2730.0         8115.0             9633.0
..          ...  ...           ...            ...                ...
117   3/27/2014    5         103.0            8.0                6.0
118   3/26/2014    4          86.0            NaN                NaN
119   3/25/2014    3          86.0            NaN                NaN
120   3/24/2014    2          86.0            NaN                NaN
121   3/22/2014    0          49.0            NaN                NaN

[122 rows x 5 columns]

If a column ends with a missing value, then it will remain missing because there is no new value to fill in.

9.3.2.4 Interpolate

Interpolation uses existing values to fill in missing values. There are many ways to fill in missing values, the interpolation in Pandas fills in missing values linearly. Specifically, it treats the missing values as if they should be equally spaced apart.

print(ebola.interpolate().iloc[:, 0:5])

           Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0      1/5/2015  289        2776.0            NaN            10030.0
1      1/4/2015  288        2775.0            NaN             9780.0
2      1/3/2015  287        2769.0         8166.0             9722.0
3      1/2/2015  286        2749.5         8157.0             9677.5
4    12/31/2014  284        2730.0         8115.0             9633.0
..          ...  ...           ...            ...                ...
117   3/27/2014    5         103.0            8.0                6.0
118   3/26/2014    4          86.0            8.0                6.0
119   3/25/2014    3          86.0            8.0                6.0
120   3/24/2014    2          86.0            8.0                6.0
121   3/22/2014    0          49.0            8.0                6.0

[122 rows x 5 columns]

Notice how it behaves kind of in a forward fill fashion, but instead of passing on the last known value, it will fill in the differences between values.

The .interpolate() method has a method parameter that can change the interpolation method.1 Possible values at the time of writing have been reproduced in Table 9.1.

1. Series.interpolate() documentation: https://pandas.pydata.org/docs/reference/api/pandas.Series.interpolate.xhtml


Table 9.1 Possible Values (at the Time of Writing) to Pass Into the method Parameter in the .interpolate() Method

[image: Images]



9.3.2.5 Drop Missing Values

The last way to work with missing data is to drop observations or variables with missing data. Depending on how much data is missing, keeping only complete case data can leave you with a useless data set. Perhaps the missing data is not random, so that dropping missing values will leave you with a biased data set, or perhaps keeping only complete data will leave you with insufficient data to run your analysis.

We can use the.dropna() method to drop missing data, and specify parameters to this method that control how data are dropped. For instance, the how parameter lets you specify whether a row (or column) is dropped when 'any' or 'all' of the data is missing. The thresh parameter lets you specify how many non-NaN values you have before dropping the row or column.

print(ebola.shape)

(122, 18)

If we keep only complete cases in our Ebola data set, we are left with just one row of data.

ebola_dropna = ebola.dropna()
print(ebola_dropna.shape)

(1, 18)

print(ebola_dropna)

          Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone  \
19  11/18/2014  241        2047.0         7082.0             6190.0

    Cases_Nigeria  Cases_Senegal  Cases_UnitedStates  Cases_Spain  \
19           20.0            1.0                 4.0          1.0

    Cases_Mali  Deaths_Guinea  Deaths_Liberia  Deaths_SierraLeone  \
19         6.0         1214.0          2963.0              1267.0

    Deaths_Nigeria  Deaths_Senegal  Deaths_UnitedStates  \
19             8.0             0.0                  1.0

    Deaths_Spain  Deaths_Mali
19           0.0          6.0

9.3.3 Calculations With Missing Data

Suppose we wanted to look at the case counts for multiple regions. We can add multiple regions together to get a new column holding the case counts.

ebola["Cases_multiple"] = (
  ebola["Cases_Guinea"]
  + ebola["Cases_Liberia"]
  + ebola["Cases_SierraLeone"]
)

Let’s look at the first 10 lines of the calculation.

ebola_subset = ebola.loc[
    :,
    [
        "Cases_Guinea",
        "Cases_Liberia",
        "Cases_SierraLeone",
        "Cases_multiple",
    ],
]
print(ebola_subset.head(n=10))

   Cases_Guinea  Cases_Liberia  Cases_SierraLeone  Cases_multiple
0        2776.0            NaN            10030.0             NaN
1        2775.0            NaN             9780.0             NaN
2        2769.0         8166.0             9722.0         20657.0
3           NaN         8157.0                NaN             NaN
4        2730.0         8115.0             9633.0         20478.0
5        2706.0         8018.0             9446.0         20170.0
6        2695.0            NaN             9409.0             NaN
7        2630.0         7977.0             9203.0         19810.0
8        2597.0     NaN 9004.0                NaN
9        2571.0         7862.0             8939.0         19372.0

You can see that a value for Cases_multiple was calculated only when there was no missing value for Cases_Guinea, Cases_Liberia, and Cases_SierraLeone. Calculations with missing values will typically return a missing value, unless the function or method called has a means to ignore missing values in its calculations.

Examples of built-in methods that can ignore missing values include .mean() and .sum(). These functions will typically have a skipna parameter that will still calculate a value by skipping over the missing values.

# skipping missing values is True by default
print(ebola.Cases_Guinea.sum(skipna = True))

84729.0

print(ebola.Cases_Guinea.sum(skipna = False))

nan

9.4 Pandas Built-In NA Missing

Pandas 1.0 introduced a built-in NA value (pd.NA). At the time of writing this feature is still “experimental”.2 The main goal of this feature is to provide a missing value that works across different data types.

2. Pandas experimental NA: https://pandas.pydata.org/docs/user_guide/missing_data.xhtml#experimental-na-scalar-to-denote-missing-values

Let’s use our previous scientists data set from earlier and look at the .dtypes.

scientists = pd.DataFrame(
  {
    "Name": ["Rosaline Franklin", "William Gosset"],
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "Age": [37, 61]
  }
)

print(scientists)

                Name    Occupation        Born        Died  Age
0  Rosaline Franklin       Chemist  1920-07-25  1958-04-16   37
1     William Gosset  Statistician  1876-06-13  1937-10-16   61

print(scientists.dtypes)

Name          object
Occupation    object
Born          object
Died          object
Age            int64
dtype: object

scientists.loc[1, "Name"] = pd.NA
scientists.loc[1, "Age"] = pd.NA

print(scientists)

                Name    Occupation        Born        Died   Age
0  Rosaline Franklin        hemist  1920-07-25  1958-04-16    37
1               <NA>  Statistician  1876-06-13  1937-10-16  <NA>

print(scientists.dtypes)

Name          object
Occupation    object
Born          object
Died          object
Age           object
dtype: object

Compare the .dtypes from pd.NA and np.NaN from earlier in this chapter.

scientists = pd.DataFrame(
  {
    "Name": ["Rosaline Franklin", "William Gosset"],
    "Occupation": ["Chemist", "Statistician"],
    "Born": ["1920-07-25", "1876-06-13"],
    "Died": ["1958-04-16", "1937-10-16"],
    "Age":[37, 61]
  }
)

scientists.loc[1, "Name"] = np.NaN
scientists.loc[1, "Age"] = np.NaN

print(scientists.dtypes)

Name           object
Occupation     object
Born           object
Died           object
Age           float64
dtype: object

Since pd.NA is still experimental, best follow up with its behavior in the official documentation.

Conclusion

It is rare to have a data set without any missing values. It is important to know how to work with missing values because, even when you are working with data that is complete, missing values can still arise from your own data munging. In this chapter, we examined some of the basic methods used in the data analysis process that pertain to data validity. By looking at your data and tabulating missing values, you can start the process of assessing whether the data is of sufficiently high quality for making decisions and drawing inferences.



10

Data Types

Data types determine what can and cannot be done to a variable (i.e., column). For example, when numeric data types are added together, the result will be a sum of the values; in contrast, if strings (in Pandas they are object or string types) are added, the strings will be concatenated together.

This chapter presents a quick overview of the various data types you may encounter in Pandas, and means to convert from one data type to another.

Learning Objectives

[image: Images] Recognize columns in data store the same data type.

[image: Images] Identify what kind of data type is stored in a column.

[image: Images] Use functions to change the type of a column.

[image: Images] Modify categorical columns.

10.1 Data Types

In this chapter, we’ll use the built-in tips data set from the seaborn library.

import pandas as pd
import seaborn as sns

tips = sns.load_data set("tips")

To get a list of the data types stored in each column of our dataframe, we call the dtypes attribute (Section 1.2).

print(tips.dtypes)

total_bill     float64
tip            float64
sex           category
smoker        category
day           category
time          category
size            int64
dtype: object

Table 1.1 listed the various types of data that can be stored in a Pandas column. Our data set includes data of types int64, float64, and category. The int64 and float64 types represent numeric values without and with decimal points, respectively. The number following the numeric data type represents the number of bits of information that will be stored for that particular number.

The category data type represents categorical variables. It differs from the generic object data type that stores arbitrary Python objects (usually strings). We will explore these differences later in this chapter. Since the tips data set is a fully prepared and cleaned data set, variables that store strings were saved as a category.

10.2 Converting Types

The data type that is stored in a column will govern which kinds of functions and calculations you can perform on the data found in that column. Clearly, then, it’s important to know how to convert between data types.

This section focuses on how to convert from one data type to another. Keep in mind that you need not do all your data type conversions at once, when you first get your data. Data analytics is not a linear process, and you can choose to convert types on the fly as needed. We saw an example of this in Section 2.4.2, when we converted a date value into just the number of years.

10.2.1 Converting to String Objects

In our tips data, the sex, smoker, day, and time variables are stored as a category. In general, it’s much easier to work with string object types when the variable is not a numeric number. There are performance benefits from using a category data type, however.

Some data sets may have an id column in which the id is stored as a number, but has no meaning if you perform a calculation on it (e.g., if you try to find the mean). Unique identifiers or id numbers are typically coded this way, and you may want to convert them to string object types depending on what you need.

To convert values into strings, we use the .astype() method on the column (i.e., Series).1 The .astype() method takes a parameter, dtype, which will be the new data type the column will take on. In this case, we want to convert the sex variable to a string object, str.

1. Series.astype() method documentation: https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.Series.astype.xhtml

# convert the category sex column into a string dtype
tips['sex_str'] = tips['sex'].astype(str)

Python has built-in str, float, int, complex, and bool types. However, you can also specify any dtype from the numpy library. If we look at the dtypes now, you will see the sex_str now has a dtype of object.

print(tips.dtypes)

total_bill       float64
tip              float64
sex             category
smoker          category
day             category
time            category
size               int64
sex_str           object
dtype: object

10.2.2 Converting to Numeric Values

The .astype() method is a generic function that can be used to convert any column in a dataframe to another dtype.

Recall that each column in a DataFrame is a Pandas Series object. That’s why the .astype() documentation is listed under pandas.Series.astype. The example here shows how to change the type of a DataFrame column, but if you are working with a Series object, you can use the same .astype() method to convert the Series as well.

We can provide any built-in or numpy type to the .astype() method to convert the dtype of the column. For example, if we wanted to convert the total_bill column first to a string object and then back to its original float64, we can pass in str and float into astype, respectively.

# convert total_bill into a string
tips['total_bill'] = tips['total_bill'].astype(str)
print(tips.dtypes)

total_bill     object
tip           float64
sex          category
smoker       category
day          category
time         category
size            int64
sex_str        object
dtype: object

# convert it back to a float
tips['total_bill'] = tips['total_bill'].astype(float)
print(tips.dtypes)

total_bill        float64
tip               float64
sex              category
smoker           category
day              category
time             category
size                int64
sex_str            object
dtype: object

10.2.2.1 The .to_numeric() Method

When converting variables into numeric values (e.g., int, float), you can also use the Pandas to_numeric() function, which handles non-numeric values better.

Since each column in a dataframe has to have the same dtype, there will be times when a numeric column contains strings as some of its values. For example, instead of the NaN value that represents a missing value in Pandas, a numeric column might use the string 'missing' or 'null' for this purpose instead. This would make the entire column a string object type instead of a numeric type.

Let’s subset our tips dataframe and also put in a 'missing' value in the total_bill column to illustrate how the to_numeric() function works.


Note

We use the .copy() method here to avoid the SettingWithCopyWarning message when we modify the subsetted data set (Appendix T).



# subset the tips data
tips_sub_miss = tips.head(10).copy()

# assign some 'missing' values
tips_sub_miss.loc[[1, 3, 5, 7], 'total_bill'] = 'missing'


print(tips_sub_miss)

  total_bill  tip    sex smoker day   time size sex_str
0      16.99 1.01 Female     No Sun Dinner    2  Female
1    missing 1.66   Male     No Sun Dinner    3    Male
2      21.01 3.50   Male     No Sun Dinner    3    Male
3    missing 3.31   Male     No Sun Dinner    2    Male
4      24.59 3.61 Female     No Sun Dinner    4  Female
5    missing 4.71   Male     No Sun Dinner    4    Male
6       8.77 2.00   Male     No Sun Dinner    2    Male
7    missing 3.12   Male     No Sun Dinner    4    Male
8      15.04 1.96   Male     No Sun Dinner    2    Male
9      14.78 3.23   Male     No Sun Dinner    2    Male

Looking at the dtypes, you will see that the total_bill column is now a string object.

print(tips_sub_miss.dtypes)

total_bill         object
tip               float64
sex              category
smoker           category
day              category
time             category
size                int64
sex_str            object
dtype: object

If we now try to use the .astype() method to convert the column back to a float, we will get an error: Pandas does not know how to convert 'missing' into a float.

# this will cause an error
tips_sub_miss['total_bill'].astype(float)

ValueError: could not convert string to float: 'missing'

If we use the to_numeric() function from the pandas library, we get a similar error.

# this will cause an error
pd.to_numeric(tips_sub_miss['total_bill'])

ValueError: Unable to parse string "missing" at position 1

The to_numeric() function has a parameter called errors that governs what happens when the function encounters a value that it is unable to convert to a numeric value. By default, this value is set to 'raise'; that is, if it does encounter a value it is unable to convert to a numeric value, it will 'raise' an error.

Based on the documentation:2

2. to_numeric() function documentation: https://pandas.pydata.org/docs/reference/api/pandas.to_numeric.xhtml

[image: Images] ‘raise’, then invalid parsing will raise an exception

[image: Images] ‘coerce’, then invalid parsing will be set as NaN

[image: Images] ‘ignore’, then invalid parsing will return the input

Going out of order from the documentation, if we pass errors the 'ignore' value, nothing will change in our column. But we also do not get an error message, which may not always be the behavior we want.

tips_sub_miss["total_bill"] = pd.to_numeric(
    tips_sub_miss["total_bill"], errors="ignore"
)

print(tips_sub_miss)

  total_bill  tip    sex smoker day   time size sex_str
0      16.99 1.01 Female     No Sun Dinner    2  Female
1    missing 1.66   Male     No Sun Dinner    3    Male
2      21.01 3.50   Male     No Sun Dinner    3    Male
3    missing 3.31   Male     No Sun Dinner    2    Male
4      24.59 3.61 Female     No Sun Dinner    4  Female
5    missing 4.71   Male     No Sun Dinner    4    Male
6       8.77 2.00   Male     No Sun Dinner    2    Male
7    missing 3.12   Male     No Sun Dinner    4    Male
8      15.04 1.96   Male     No Sun Dinner    2    Male
9      14.78 3.23   Male     No Sun Dinner    2    Male

print(tips_sub_miss.dtypes)

total_bill     object
tip           float64
sex          category
smoker       category
day          category
time         category
size            int64
sex_str        object
dtype: object

In contrast, if we pass in the 'coerce' value, we will get NaN values for the 'missing' string.

tips_sub_miss["total_bill"]=pd.to_numeric(
    tips_sub_miss["total_bill"], errors="coerce"
)

print(tips_sub_miss)

   total_bill  tip    sex smoker day   time size sex_str
0       16.99 1.01 Female     No Sun Dinner    2  Female
1         NaN 1.66   Male     No Sun Dinner    3    Male
2       21.01 3.50   Male     No Sun Dinner    3    Male
3         NaN 3.31   Male     No Sun Dinner    2    Male
4       24.59 3.61 Female     No Sun Dinner    4  Female
5         NaN 4.71   Male     No Sun Dinner    4    Male
6        8.77 2.00   Male     No Sun Dinner    2    Male
7         NaN 3.12   Male     No Sun Dinner    4    Male
8       15.04 1.96   Male     No Sun Dinner    2    Male
9       14.78 3.23   Male     No Sun Dinner    2    Male

print(tips_sub_miss.dtypes)

total_bill    float64
tip           float64
sex          category
smoker       category
day          category
time         category
size            int64
sex_str        object
dtype: object

This is a useful trick when you know a column must contain numeric values, but for some reason the data include non-numeric values.

10.3 Categorical Data

Not all data values are numeric. Pandas has a category dtype that can encode categorical values.3 Here are a few use cases for categorical data:

3. Categorical data: https://pandas.pydata.org/docs/user_guide/categorical.xhtml

[image: Images] It can be memory and speed efficient to store data in this manner, especially if the data set includes many repeated string values

[image: Images] Categorical data may be appropriate when a column of values has an order (e.g., a Likert scale)

[image: Images] Some Python libraries understand how to deal with categorical data (e.g., when fitting statistical models)

10.3.1 Convert to Category

To convert a column into a categorical type, we pass category into the .astype() method.

# convert the sex column into a string object first
tips['sex'] = tips['sex'].astype('str')
print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 8 columns):

 #  Column     Non-Null Count Dtype
--- ------     -------------- -----
 0  total_bill 244 non-null   float64
 1  tip        244 non-null   float64
 2  sex        244 non-null   object
 3  smoker     244 non-null   category
 4  day        244 non-null   category
 5  time       244 non-null   category
 6  size       244 non-null   int64
 7  sex_str    244 non-null   object
dtypes: category(3), float64(2), int64(1), object(2)
memory usage: 10.8+ KB
None

# convert the sex column back into categorical data
tips['sex'] = tips['sex'].astype('category')
print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 8 columns):

 #  Column     Non-Null Count Dtype
--- ------     -------------- -----
 0  total_bill 244 non-null   float64
 1  tip        244 non-null   float64
 2  sex        244 non-null   category
 3  smoker     244 non-null   category
 4  day        244 non-null   category
 5  time       244 non-null   category
 6  size       244 non-null   int64
 7  sex_str    244 non-null   object
dtypes: category(4), float64(2), int64(1), object(1)
memory usage: 9.3+ KB
None

You can also see the difference in memory usage from the string and category storage.

10.3.2 Manipulating Categorical Data

The API reference has a list of which operations can be performed on a categorical Series.4 The .cat. accessor is an attribute that allows you to access the category information in the Series. This list has been reproduced in Table 10.1.

4. The .cat. accessor: https://pandas.pydata.org/docs/reference/series.xhtml#categorical-accessor


Table 10.1 Categorical Accessor Attributes and Methods

[image: Images]



Conclusion

This chapter covered how to convert from one data type to another. dtypes govern which operations can and cannot be performed on a column. While this chapter is relatively short, converting types is an important skill when you are working with data and when you are using other Pandas methods.



11

Strings and Text Data

Introduction

Most data in the world can be stored as text and strings. Even values that may eventually be numeric data may initially come in the form of text. It’s important to be able to work with text data. This chapter won’t be specific to Pandas. That is, we will mainly explore how you manipulate strings within Python without Pandas. The following chapters will cover some more Pandas materials. Then we will come back to strings and see how it all ties back with Pandas. As an aside, some of the string examples in this chapter come from Monty Python and the Holy Grail.

Learning Objectives

[image: Images] Recall how to subset containers and sequences

[image: Images] Recognize strings are a type of container object

[image: Images] Modify strings based on use case

[image: Images] Create regular expression patterns to match strings

[image: Images] Combine pose text with code output into a single sentence

11.1 Strings

In Python, a string is simply a series of characters. They are created by a set of opening and matching single or double quotes. Below are two strings, grail and a scratch. These strings are assigned to the variables word and sent, respectively.

word = 'grail'
sent = 'a scratch'

So far in this book, we have seen strings in a column represented as the object dtype.

11.1.1 Subset and Slice Strings

A string can be thought of as a container of characters. You can subset a string like any other Python container (e.g., list or Series).

Table 11.1 and Table 11.2 show the strings with their associated index. This information will help you understand the examples in which we slice values using the index.


Table 11.1 Index Positions for the String ''grail''

[image: Images]




Table 11.2 Index Positions for the String ''a scratch''

[image: Images]



11.1.1.1 Single Letter

To get the first letter of our strings, we can use the square bracket notation, [ ]. This notation is the same method we used in Section 1.3 when we looked at various slices of data.

print(word[0])

g

print(sent[3])

c

11.1.1.2 Slice Multiple Letters

Alternatively, we can use slicing notation (Appendix L) to get ranges from our strings.

# get the first 3 characters
# note index 3 is really the 4th character
print(word[0:3])

gra

Recall that when using slicing notation in Python, it is left-side inclusive, right-side exclusive. In other words, it will include the index value specified first, but it will not include the index value specified second.

For example, the notation [0:3] will include the characters from 0 to 3, but not index 3. Another way to say this is to state that [0:3] will include the indices from 0 to 2, inclusive.

11.1.1.3 Negative Numbers

Recall that in Python, passing in a negative index actually starts the count from the end of a container.

# get the last letter from "a scratch"
print(sent[ -1])

h

The negative index refers to the index position as well, so you can also use it to slice values.

# get 'a' from "a scratch"
print(sent[ -9: -8])

a

You can combine non-negative numbers with negative numbers.

# get 'a'
print(sent[0: -8])

a

Note that you can’t actually get the last letter when using a negative index for the second value.

# scratch
print(sent[2: -1])

scratc

# scratch
print(sent[ -7: -1])

scratc

11.1.2 Get the Last Character in a String

Just getting the last element in a string (or any container) can be done with the negative index, -1. However, it becomes problematic when we want to use slicing notation and also include the last character. For example, if we tried to use slicing notation to get the word “scratch” from the sent variable, the result returned would be one letter short.

Since Python is right-side exclusive, we need to specify an index position that is one greater than the last index. To do this, we can get the len (length) of the string and then pass that value into the slicing notation.

# note that the last index is one position is smaller than
# the number returned for len
s_len = len(sent)
print(s_len)

9

print(sent[2:s_len])

scratch

11.1.2.1 Slice From the Beginning or to the End

A very common task is to slice a value from the beginning to a certain point in the string (or container). The first element will always be 0, so we can always write something like word[0:3] to get the first three elements, or word[-3:len(word)] to get the last three elements.

Another shortcut for this task is to leave out the data on the left or right side of the :. If the left side of the : is empty, then the slice will start from the beginning and end at the index on the right (non-inclusive). If the right side of the : is empty, then the slice will start from the index on the left, and end at the end of the string. For example, these slices are equivalent:

print(word[0:3])

gra

# left the left side empty
print(word[ :3])

gra

print(sent[2:len(sent)])

scratch

# leave the right side empty
print(sent[2: ])

scratch

Another way to specify the entire string is to leave both values empty.

print(sent[:])

a scratch

11.1.2.2 Slice Increments (Steps)

The final notation while slicing allows you to slice in increments. To do this, you use a second colon, :, to provide a third number. The third number allows you to specify the increment to pull values out.

For example, you can get every other string by passing in 2 for every second character.

# step by 2, to get every other character
print(sent[::2])

asrth

Any integer can be passed here, so if you wanted every third character (or value in a container), you could pass in 3.

# get every third character
print(sent[::3])

act

11.2 String Methods

Many methods are also used when processing data in Python. A list of all the string methods can be found on the “String Methods” documentation page.1 Table 11.3 and Table 11.4 summarize some string methods that are commonly used in Python.

1. String methods: https://docs.python.org/3/library/stdtypes.xhtml#string-methods


Table 11.3 Python String Methods

[image: Images]




Table 11.4 Examples of Using Python String Methods

[image: Images]



11.3 More String Methods

There are a few more string methods that are useful, but hard to convey in a table.

11.3.1 Join

The .join() method takes a container (e.g., a list) and returns a new string that combines each element in the list. For example, suppose we wanted to combine coordinates in the degrees, minutes, seconds (DMS) notation.

d1 = '40°'
m1 = "46'"
s1 = '52.837"'
u1 = 'N'

d2 = '73°'
m2 = "58'"
s2 = '26.302"'
u2 = 'W'

We can join all the values with a space, ' ', by using the .join() method on the space string.

coords = ' '.join([d1, m1, s1, u1, d2, m2, s2, u2])
print(coords)

40° 46' 52.837" N 73° 58' 26.302" W

This method is also useful if you have a list of strings that you want to separate using your own delimiter (e.g., tabs with \t and commas with ,). If we wanted, we could now .split() on a space, " ", and get the individual parts from coords.

coords.split(" ")

['40°', "46'", '52.837"', 'N', '73°', "58'", '26.302"', 'W']

11.3.2 Splitlines

The .splitlines() method is similar to the .split() method. It is typically used on strings that are multiple lines long and will return a list in which each element of the list is a line in the multiple-line string.


Note

You can create a multi-line string in Python by beginning and ending the string with a triple-quote, ''' or """.



multi_str = """Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're bangin' 'em together.
"""

print(multi_str)

Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're bangin' 'em together.

We can get every line as a separate element in a list using .splitlines().

multi_str_split = multi_str.splitlines()

print(multi_str_split)

[
  "Guard: What? Ridden on a horse?",
  "King Arthur: Yes!",
  "Guard: You're using coconuts!",
  "King Arthur: What?",
  "Guard: You've got ... coconut[s] and you're bangin' 'em together."
]

Finally, suppose we just wanted the text from the “Guard”. This is a two-person conversation, so the “Guard” speaks every other line.

guard = multi_str_split[::2]

print(guard)

[
  "Guard: What? Ridden on a horse?",
  "Guard: You're using coconuts!",
  "Guard: You've got ... coconut[s] and you're bangin' 'em together." ]
]

There are a few ways to just get the lines from the “Guard”. One way would be to use the .replace() method on the string and .replace() the Guard: string with an empty string ''. We could then use the .splitlines() method.

guard = multi_str.replace("Guard: ","").splitlines()[::2]

print(guard)

[
  "What? Ridden on a horse?",
  "You're using coconuts!",
  "You've got ... coconut[s] and you're bangin' 'em together."
]

11.4 String Formatting (F-Strings)

TODO: fix this section to only use f-strings

Formatting strings allows you to specify a generic template for a string, and insert variables into the pattern. It can also handle various ways to visually represent strings—for example, showing two decimal values in a float, or showing a number as a percentage instead of a decimal value.

String formatting can even help when you want to print something to the console. Instead of just printing out the variable, you can print a string that provides hints about the value that is printed.

This chapter will only talk about “formatted literal strings”, also known as f-strings, which were introduced in Python 3.6. Older C-Style formatting and the .format() method have been moved to Appendix W.1 and Appendix W.2, respectively.

11.5 Regular Expressions (RegEx)

When the base Python string methods that search for patterns aren’t enough, you can throw the kitchen sink at the problem by using regular expressions (regex). The extremely powerful regular expressions provide a (nontrivial) way to find and match patterns in strings. The downside is that after you finish writing a complex regular expression, it becomes difficult to figure out what the pattern does by looking at it. That is, the syntax is difficult to read.

For many data tasks, such as matching a telephone number or address field validation, it’s almost easier to Google which type of pattern you are trying to match, and paste what someone has already written into your own code (don’t forget to document where you got the pattern from).

Before continuing, you might want to visit regex101.2 It’s a great place and reference for regular expressions and testing patterns on test strings. It even has a Python mode, so you can directly copy/paste a pattern from the site into your own Python code.

Regular expressions in Python use the re module.3 This module also has a great How To4 that can be used as an additional resource.

2. Regex101 website: https://regex101.com/

3. re module documentation: https://docs.python.org/3/library/re.xhtml

4. Regular Expression HOWTO: https://docs.python.org/3/howto/regex.xhtml#regex-howto

Table 11.5 and Table 11.6 show some RegEx syntax and special characters that will be used in this section.

To use regular expressions, we write a string that contains the RegEx pattern, and provide a string for the pattern to match. Various functions within re can be used to handle specific needs. Some common tasks are provided in Table 11.7.


Table 11.5 Basic RegEx Syntax

[image: Images]




Table 11.6 RegEx Special Characters

[image: Images]




Table 11.7 Common RegEx Functions in re

[image: Images]



11.5.1 Match a Pattern

We will be using the re module to write the regular expression pattern we want to match in a string. Let’s write a pattern that will match 10 digits (the digits for a U.S. telephone number).

import re

tele_num = '1234567890'

There are many ways we can match 10 consecutive digits. We can use the match() function to see if the pattern matches a string. The output of many re functions is a match object.

m = re.match(pattern='\d\d\d\d\d\d\d\d\d\d', string=tele_num)
print(type(m))

<class 're.Match'>

print(m)

<re.Match object; span=(0, 10), match='1234567890'>

If we look at the printed match object, we see that, if there was a match, the span identifies the index of the string where the matches occurred, and the match identifies the exact string that got matched.

Many times when we are matching a pattern to a string, we simply want a True or False value indicating whether there was a match. If you just need a True/False value returned, you can run the built-in bool() function to get the boolean value of the match object.

print(bool(m))

True

At other times, a regular expression match will be part of an if statement (Appendix X), so this kind of bool() casting is unnecessary.

# should print match
if m:
  print('match')
else:
  print('no match')

match

If we wanted to extract some of the match object values, such as the index positions or the actual string that matched, we can use a few methods on the match object.

# get the first index of the string match
print(m.start())

0

# get the last index of the string match
print(m.end())

10

# get the first and last index of the string match
print(m.span())

(0, 10)

# the string that matched the pattern
print(m.group())

1234567890

Telephone numbers can be a little more complex than a series of 10 consecutive digits. Here’s another common representation.

tele_num_spaces = '123 456 7890'

Suppose we use the previous pattern in this example.

# we can simplify the previous pattern
m = re.match(pattern='\d{10}', string=tele_num_spaces)
print(m)

None

You can tell the pattern did not match because the match object returned None. If we run our if statement again, it will print 'no match'.

if m:
   print('match')
else:
   print('no match')

no match

Let’s modify our pattern this time, by assuming the new string has three digits, a space, another three digits, and another space, followed by four digits. If we want to make it general to the original example, the spaces can be matched zero or one time. The new RegEx pattern will look like the following code:

# you may see the RegEx pattern as a separate variable
# because it can get long and
# make the actual match function call hard to read
p = '\d{3}\s?\d{3}\s?\d{4}'
m = re.match(pattern=p, string=tele_num_spaces)
print(m)

<re.Match object; span=(0, 12), match='123 456 7890'>

Area codes can also be surrounded by parentheses and a dash between the seven main digits.

tele_num_space_paren_dash = '(123) 456-7890'
p = '\(?\d{3}\)?\s?\d{3}\s?-?\d{4}'
m = re.match(pattern=p, string=tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 14), match='(123) 456-7890'>

Finally, there could be a country code before the number.

cnty_tele_num_space_paren_dash = '+1 (123) 456-7890'
p = '\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}'

m = re.match(pattern=p, string=cnty_tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 17), match='+1 (123) 456-7890'>

As these examples suggest, although powerful, regular expressions can easily become unwieldy. Even something as simple as a telephone number can lead to a daunting series of symbols and numbers. Even so, sometimes regular expressions are the only way to get something done.

11.5.2 Remember What your RegEx Patterns Are

The last regular expression of a phone number had many complex components. Chances are you forget what most of the pattern means after you write it, let alone trying to figure out what it means when you eventually review back your code.

Let’s see how we can re-write the last example in a more maintainable way, by utilizing one of the quirks of the Python language.

In Python 2 strings next to each other will be concatenated and joined together into a single string.

"multiple" "strings" "next" "to" "each" "other"

'multiplestringsnexttoeachother'

Note that no extra delimiter, space, or character is added between subsequent strings, they are just concatenated together.


Tip

You can also use this trick with really long URLs that you want to split across multiple lines.



That also means that we could break up our long pattern string across multiple lines. We can tell python to treat all the separate strings as a single value that we can assign to a variable by wrapping the statement around a pair of round parentheses, ( ).

p = (
  '\+?'
  '1'
  '\s?'
  '\(?'
  '\d{3}'
   '\)?'
  '\s?'
  '\d{3}'
  '\s?'
  '-?'
  '\d{4}'
)
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

Now that we have our code across multiple lines, we can add comments to our string, as if it was regular Python code.

p = (
  '\+?'     # maybe starts with a +
  '1'       # the number 1
  '\s?'     # maybe there's a whitespace
  '\(?'     # maybe there's an open round parenthesis (
  '\d{3}'   # 3 numbers
  '\)?'     # maybe there's a closing round parenthesis )
  '\s?'     # maybe there's a whitespace
  '\d{3}'   # 3 numbers
  '\s?'     # maybe there's a whitespace
  '-?'      # maybe there's a dash character
  '\d{4}'   # 4 numbers
)
print(p)

\+?1\s?\(?\d{3}\)?\s?\d{3}\s?-?\d{4}

This technique allows you to write your regular expressions in a manner that you can understand later on, and make it easier to debug the pattern if something is not matching as you expect.

cnty_tele_num_space_paren_dash = '+1 (123) 456-7890'
m = re.match(pattern=p, string=cnty_tele_num_space_paren_dash)
print(m)

<re.Match object; span=(0, 17), match='+1 (123) 456-7890'>

11.5.3 Find a Pattern

We can use the findall() function to find all matches within a pattern. Let’s write a pattern that matches digits and uses it to find all the digits from a string.

# python will concatenate 2 strings next to each other
s = (
  "14 Ncuti Gatwa, "
  "13 Jodie Whittaker, war John Hurt, 12 Peter Capaldi, "
  "11 Matt Smith, 10 David Tennant, 9 Christopher Eccleston"
)

print(s)

14 Ncuti Gatwa, 13 Jodie Whittaker, war John Hurt, 12 Peter Capaldi,
11 Matt Smith, 10 David Tennant, 9 Christopher Eccleston

# pattern to match 1 or more digits
p = "\d+"

m = re.findall(pattern=p, string=s)
print(m)

['14', '13', '12', '11', '10', '9']

11.5.4 Substitute a Pattern

In our str.replace() example (Section 11.3.2), we wanted to get all the lines from the Guard, so we ended up doing a direct string replacement on the script. However, using regular expressions, we can generalize the pattern so we can get either the line from the Guard or the line from King Arthur.

multi_str = """Guard: What? Ridden on a horse?
King Arthur: Yes!
Guard: You're using coconuts!
King Arthur: What?
Guard: You've got ... coconut[s] and you're bangin' 'em together.
"""

p = '\w+\s?\w+:\s?'

s = re.sub(pattern=p, string=multi_str, repl ='')
print(s)

What? Ridden on a horse?
Yes!
You're using coconuts!
What?
You've got ... coconut[s] and you're bangin' 'em together.

Now we can get either party’s line by using string slicing with increments.

guard = s.splitlines()[ ::2]
kinga = s.splitlines()[1::2] # skip the first element

print(guard)

[
  "What? Ridden on a horse?",
  "You're using coconuts!",
  "You've got ... coconut[s] and you're bangin' 'em together."
]

print(kinga)

[
  "Yes!",
  "What?"
]

Don’t be afraid to mix and match regular expressions with the simpler pattern match and string methods.

11.5.5 Compile a Pattern

When we work with data, typically many operations will occur on a column-by-column or row-by-row basis. Python’s re module allows you to compile() a pattern so it can be reused. This can lead to performance benefits, especially if your data set is large. Here we will see how to compile a pattern and use it just as we did in the previous examples in this section.

The syntax is almost the same. We write our regular expression pattern, but this time, instead of saving it to a variable directly, we pass the string into the compile() function and save that result. We can then use the other re functions on the compiled pattern. Also, since the pattern is already compiled, you no longer need to specify the pattern parameter in the method.

Here is the match() example:

# pattern to match 10 digits
p = re.compile('\d{10}')
s = '1234567890'

# note: calling match on the compiled pattern
# not using the re.match function
m = p.match(s)
print(m)

<re.Match object; span=(0, 10), match='1234567890'>

The findall() example:

p = re.compile('\d+')
s = (
  "14 Ncuti Gatwa, "
  "13 Jodie Whittaker, war John Hurt, 12 Peter Capaldi, "
  "11 Matt Smith, 10 David Tennant, 9 Christopher Eccleston"
)

m = p.findall(s)
print(m)

['14', '13', '12', '11', '10', '9']

The sub() or substitution example:

p = re.compile('\w+\s?\w+:\s?')
s = "Guard: You're using coconuts!"

m = p.sub(string=s, repl='')
print(m)

You're using coconuts!

11.6 The regex Library

The re library is popular because it comes with the Python installation. However, seasoned regular expression writers may find the regex library to have more comprehensive features. It is backward compatible with the re library, so all the code from the re RegEx section (Section 11.5) will still work with the regex library. The documentation for this library can be found on the PyPI page.5

5. regex documentation: https://pypi.python.org/pypi/regex

import regex

# a re example using the regex library
p = regex.compile('\d+')
s = (
  "14 Ncuti Gatwa, "
  "13 Jodie Whittaker, war John Hurt, 12 Peter Capaldi, "
  "11 Matt Smith, 10 David Tennant, 9 Christopher Eccleston"
)

m = p.findall(s)
print(m)

['14', '13', '12', '11', '10', '9']

I will defer to the examples and explanations on http://www.rexegg.com/ for more details:

[image: Images] www.rexegg.com/regex-python.xhtml

[image: Images] www.rexegg.com/regex-best-trick.xhtml

Conclusion

The world is filled with data stored as text. Understanding how to manipulate text strings is a fundamental skill for the data scientist. Python has many built-in string methods and libraries that can make string and text manipulation easier. This chapter covered some of the fundamental methods of string manipulations that we can build on when working with data.
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Dates and Times

One of the bigger reasons for using Pandas is its ability to work with timeseries data. We observed some of this capability earlier, when we concatenated data in Chapter 6 and saw how the indices automatically aligned themselves. This chapter focuses on the more common tasks encountered when working with data that involve dates and times.

Learning Objectives

[image: Images] Create date objects with the datetime library

[image: Images] Use functions to convert strings into a date

[image: Images] Use functions to format dates

[image: Images] Perform date calculations

[image: Images] Use functions to resample dates

[image: Images] Use functions to work with and convert time zones

12.1 Python's datetime Object

Python has a built-in datetime object that is found in the datetime library.

from datetime import datetime

We can use datetime to get the current date and time.

now = datetime.now()
print(f"Last time this chapter was rendered for print: {now}")

Last time this chapter was rendered for print: 2022-09-01 01:55:41.496795

We can also create our own datetime manually.

t1 = datetime.now()
t2 = datetime(1970,1,1)


And we can do datetime math.

diff = t1 - t2
print(diff)

19236 days, 1:55:41.499914

The data type of a date calculation is a timedelta.

print(type(diff))

<class 'datetime.timedelta'>

We can perform these types of actions when working within a Pandas dataframe.

12.2 Converting to datetime

Converting an object type into a datetime type is done with the to_datatime function. Let’s load up our Ebola data set and convert the Date column into a proper datetime object.

import pandas as pd
ebola = pd.read_csv('data/country_timeseries.csv')

# top left corner of the data
print(ebola.iloc[:5, :5])

        Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
0   1/5/2015 289       2776.0           NaN           10030.0
1   1/4/2015 288       2775.0           NaN            9780.0
2   1/3/2015 287       2769.0        8166.0            9722.0
3   1/2/2015 286          NaN        8157.0               NaN
4 12/31/2014 284       2730.0        8115.0            9633.0

The first Date column contains date information, but the .info() attribute tells us it is actually encoded as a generic string object in Pandas.

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):

 #  Column              Non-Null Count Dtype
--- ------              -------------- -----
 0  Date                122 non-null   object
 1  Day                 122 non-null   int64
 2  Cases_Guinea        93 non-null   float64
 3  Cases_Liberia       83 non-null   float64
 4  Cases_SierraLeone   87 non-null   float64
 5  Cases_Nigeria       38 non-null   float64
 6  Cases_Senegal       25 non-null   float64
 7  Cases_UnitedStates  18 non-null   float64
 8  Cases_Spain         16 non-null   float64
 9  Cases_Mali          12 non-null   float64
 10 Deaths_Guinea       92 non-null   float64
 11 Deaths_Liberia      81 non-null   float64
 12 Deaths_SierraLeone  87 non-null   float64
 13 Deaths_Nigeria      38 non-null   float64
 14 Deaths_Senegal      22 non-null   float64
 15 Deaths_UnitedStates 18 non-null   float64
 16 Deaths_Spain        16 non-null   float64
 17 Deaths_Mali         12 non-null   float64
dtypes: float64(16), int64(1), object(1)
memory usage: 17.3+ KB
None

We can create a new column, date_dt, that converts the Date column into a datetime.

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We can also be a little more explicit with how we convert data into a datetime object.

The to_datetime() function has a parameter called format that allows you to manually specify the format of the date you are hoping to parse. Since our date is in a month/day/year format, we can pass in the string %m/%d/%Y.

ebola['date_dt'] = pd.to_datetime(ebola['Date'], format='%m /%d/%Y')

In both cases, we end up with a new column with a datetime type.

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 21 columns):

 #  Column              Non-Null Count Dtype
--- ------              -------------- -----
 0  Date                122 non-null   object
 1  Day                 122 non-null   int64
 2  Cases_Guinea        93 non-null   float64
 3  Cases_Liberia       83 non-null   float64
 4  Cases_SierraLeone   87 non-null   float64
 5  Cases_Nigeria       38 non-null   float64
 6  Cases_Senegal       25 non-null   float64
 7  Cases_UnitedStates  18 non-null   float64
 8  Cases_Spain         16 non-null   float64
 9  Cases_Mali          12 non-null   float64
 10 Deaths_Guinea       92 non-null   float64
 11 Deaths_Liberia      81 non-null   float64
 12 Deaths_SierraLeone  87 non-null   float64
 13 Deaths_Nigeria      38 non-null   float64
 14 Deaths_Senegal      22 non-null   float64
 15 Deaths_UnitedStates 18 non-null   float64
 16 Deaths_Spain        16 non-null   float64
 17 Deaths_Mali         12 non-null   float64
 18 date_dt             122 non-null  datetime64[ns]
 19 date_dt_a           122 non-null  datetime64[ns]
 20 date_dt_al          122 non-null  datetime64[ns]
dtypes: datetime64[ns](3), float64(16), int64(1), object(1)
memory usage: 20.1+ KB
None

The to_datetime() function includes convenient built-in options. For example, you can set the dayfirst or yearfirst options to True if the date format begins with a day (e.g., 31-03-2014) or if the date begins with a year (e.g., 2014-03-31), respectively.

For other date formats, you can manually specify how they are represented using the syntax specified by python’s strptime.1 This syntax is replicated in Table 12.1 from the official Python documentation.

1. strftime (string format time) and strptime (string prase time) behavior: https://docs.python.org/3/library/datetime.xhtml#strftime-and-strptime-behavior


Table 12.1 Python strftime and strptime Behavior (reproduced from the official Python documentation2)
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2. strftime (string format time) and strptime (string prase time) behavior: https://docs.python.org/3/library/datetime.xhtml#strftime-and-strptime-behavior

12.3 Loading Data That Include Dates

Many of the data sets used in this book are in a CSV format, or else they come from the seaborn library. The gapminder data set was an exception: It was a tab-separated file (TSV). The read_csv() function has a lot of parameters – for example, parse_dates, inher_datetime_format, keep_date_col, date_parser, dayfirst, and cache_dates. We can parse the Date column directly by specifying the column we want in the parse_dates parameter.

ebola = pd.read_csv('data/country_timeseries.csv', parse_dates=["Date"])
print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):

 #  Column              Non-Null Count Dtype
--- ------              -------------- -----
 0  Date                122 non-null   datetime64[ns]
 1  Day                 122 non-null   int64
 2  Cases_Guinea        93 non-null   float64
 3  Cases_Liberia       83 non-null   float64
 4  Cases_SierraLeone   87 non-null   float64
 5  Cases_Nigeria       38 non-null   float64
 6  Cases_Senegal       25 non-null   float64
 7  Cases_UnitedStates  18 non-null   float64
 8  Cases_Spain         16 non-null   float64
 9  Cases_Mali          12 non-null   float64
 10 Deaths_Guinea       92 non-null   float64
 11 Deaths_Liberia      81 non-null   float64
 12 Deaths_SierraLeone  87 non-null   float64
 13 Deaths_Nigeria      38 non-null   float64
 14 Deaths_Senegal      22 non-null   float64
 15 Deaths_UnitedStates 18 non-null   float64
 16 Deaths_Spain        16 non-null   float64
 17 Deaths_Mali         12 non-null   float64
dtypes: datetime64[ns](1), float64(16), int64(1)
memory usage: 17.3 KB
None

This example shows how we can automatically convert columns into dates directly when the data are loaded.

12.4 Extracting Date Components

Now that we have a datetime object, we can extract various parts of the date, such as year, month, or day. Here’s an example datetime object.

d = pd.to_datetime('2021-12-14')
print(d)

2021-12-14 00:00:00

If we pass in a single string, we get a Timestamp.

print(type(d))

<class 'pandas._libs.tslibs.timestamps.Timestamp'>

Now that we have a proper datetime, we can access various date components as attributes.

print(d.year)

2021

print(d.month)

12

print(d.day)

14

In Chapter 4, we tidied our data when we needed to parse a column that stored multiple bits of information and used the .str. accessor to use string methods like

.split(). We can do something similar here with datetime objects by accessing datetime methods using the .dt. accessor.3 Let’s first re-create our date_dt column.

3. Datetime-like properties: https://pandas.pydata.org/docs/reference/series.xhtml#datetimelike-properties

ebola['date_dt'] = pd.to_datetime(ebola['Date'])

We know we can get date components such as the year, month, and day by using the year, month, and day attributes, respectively, on a column basis; we saw how this works when we parsed strings in a column using .str.. Here’s the Date and date_dt columns we just created.

print(ebola[['Date', 'date_dt']])

          Date    date_dt
0   2015-01-05 2015-01-05
1   2015-01-04 2015-01-04
2   2015-01-03 2015-01-03
3   2015-01-02 2015-01-02
4   2014-12-31 2014-12-31
..         ...        ...
117 2014-03-27 2014-03-27
118 2014-03-26 2014-03-26
119 2014-03-25 2014-03-25
120 2014-03-24 2014-03-24
121 2014-03-22 2014-03-22

[122 rows x 2 columns]

We can create a new year column based on the Date column.

ebola['year'] = ebola['date_dt'].dt.year
print(ebola[['Date', 'date_dt', 'year']])

          Date    date_dt year
0   2015-01-05 2015-01-05 2015
1   2015-01-04 2015-01-04 2015
2   2015-01-03 2015-01-03 2015
3   2015-01-02 2015-01-02 2015
4   2014-12-31 2014-12-31 2014
..         ...        ...  ...
117 2014-03-27 2014-03-27 2014
118 2014-03-26 2014-03-26 2014
119 2014-03-25 2014-03-25 2014
120 2014-03-24 2014-03-24 2014
121 2014-03-22 2014-03-22 2014

[122 rows x 3 columns]

Let’s finish parsing our date.

ebola = ebola.assign(
    month=ebola["date_dt"].dt.month,
    day=ebola["date_dt"].dt.day
)

print(ebola[['Date', 'date_dt', 'year', 'month', 'day']])

          Date    date_dt year month day
0   2015-01-05 2015-01-05 2015     1   5
1   2015-01-04 2015-01-04 2015     1   4
2   2015-01-03 2015-01-03 2015     1   3
3   2015-01-02 2015-01-02 2015     1   2
4   2014-12-31 2014-12-31 2014    12  31
..         ...        ...  ...   ... ...
117 2014-03-27 2014-03-27 2014      3 27
118 2014-03-26 2014-03-26 2014      3 26
119 2014-03-25 2014-03-25 2014      3 25
120 2014-03-24 2014-03-24 2014      3 24
121 2014-03-22 2014-03-22 2014      3 22

[122 rows x 5 columns]

When we parsed out our dates, the data type was not preserved.

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 22 columns):

 #   Column             Non-Null Count Dtype
---  ------             -------------- -----
 0  Date                122 non-null   datetime64[ns]
 1  Day                 122 non-null   int64
 2  Cases_Guinea        93 non-null    float64
 3  Cases_Liberia       83 non-null    float64
 4  Cases_SierraLeone   87 non-null    float64
 5  Cases_Nigeria       38 non-null    float64
 6  Cases_Senegal       25 non-null    float64
 7  Cases_UnitedStates  18 non-null    float64
 8  Cases_Spain         16 non-null    float64
 9  Cases_Mali          12 non-null    float64
 10 Deaths_Guinea       92 non-null    float64
 11 Deaths_Liberia      81 non-null    float64
 12 Deaths_SierraLeone  87 non-null    float64
 13 Deaths_Nigeria      38 non-null    float64
 14 Deaths_Senegal      22 non-null    float64
 15 Deaths_UnitedStates 18 non-null    float64
 16 Deaths_Spain        16 non-null    float64
 17 Deaths_Mali         12 non-null    float64
 18 date_dt             122 non-null   datetime64[ns]
 19 year                122 non-null   int64
 20 month               122 non-null   int64
 21 day                 122 non-null   int64
dtypes: datetime64[ns](2), float64(16), int64(4)
memory usage: 21.1 KB
None

12.5 Date Calculations and Timedeltas

One of the benefits of having date objects is being able to do date calculations. Our Ebola data set includes a column named Day that indicates how many days into an Ebola outbreak a country is. We can recreate this column using date arithmetic. Here’s the bottom left corner of our data.

print(ebola.iloc[ -5:, :5])

          Date  Day   Cases_Guinea   Cases_Liberia Cases_SierraLeone
117 2014-03-27    5          103.0             8.0               6.0
118 2014-03-26    4           86.0             NaN               NaN
119 2014-03-25    3           86.0             NaN               NaN
120 2014-03-24    2           86.0             NaN               NaN
121 2014-03-22    0           49.0             NaN               NaN

The first day of the outbreak (the earliest date in this data set) is 2015-03-22. So, if we want to calculate the number of days into the outbreak, we can subtract this date from each date by using the .min() method of the column.

print(ebola['date_dt'].min())

2014-03-22 00:00:00

We can use this date in our calculation.

ebola['outbreak_d'] = ebola['date_dt'] - ebola['date_dt'].min()

print(ebola[['Date', 'Day', 'outbreak_d']])

          Date Day  outbreak_d
0   2015-01-05 289    289 days
1   2015-01-04 288    288 days
2   2015-01-03 287    287 days
3   2015-01-02 286    286 days
4   2014-12-31 284    284 days
..         ... ...         ...
117 2014-03-27   5      5 days
118 2014-03-26   4      4 days
119 2014-03-25   3      3 days
120 2014-03-24   2      2 days
121 2014-03-22   0      0 days

[122 rows x 3 columns]

When we perform this kind of date calculation, we actually end up with a timedelta object.

print(ebola.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121 Data columns (total 23 columns):
 #  Column              Non-Null Count Dtype
--- ------              -------------- -----
 0  Date                122 non-null   datetime64[ns]
 1  Day                 122 non-null   int64
 2  Cases_Guinea        93 non-null    float64
 3  Cases_Liberia       83 non-null    float64
 4  Cases_SierraLeone   87 non-null    float64
 5  Cases_Nigeria       38 non-null    float64
 6  Cases_Senegal       25 non-null    float64
 7  Cases_UnitedStates  18 non-null    float64
 8  Cases_Spain         16 non-null    float64
 9  Cases_Mali          12 non-null    float64
 10 Deaths_Guinea       92 non-null    float64
 11 Deaths_Liberia      81 non-null    float64
 12 Deaths_SierraLeone  87 non-null    float64
 13 Deaths_Nigeria      38 non-null    float64
 14 Deaths_Senegal      22 non-null    float64
 15 Deaths_UnitedStates 18 non-null    float64
 16 Deaths_Spain        16 non-null    float64
 17 Deaths_Mali         12 non-null    float64
 18 date_dt             122 non-null   datetime64[ns]
 19 year                122 non-null   int64
 20 month               122 non-null   int64
 21 day                 122 non-null   int64
 22 outbreak_d          122 non-null   timedelta64[ns]
dtypes: datetime64[ns](2), float64(16), int64(4), timedelta64[ns](1)
memory usage: 22.0 KB
None

We get timedelta objects as results when we perform calculations with datetime objects.

12.6 Datetime Methods

Let’s look at another data set. This one deals with bank failures.

banks = pd.read_csv('data/banklist.csv')
print(banks.head())

                                             Bank Name  \
0                                  Fayette County Bank
1    Guaranty Bank, (d/b/a BestBank in Georgia & Mi...
2                                       First NBC Bank
3                                       Proficio Bank
4                         Seaway Bank and Trust Company

                   City     ST   CERT  \
0            Saint Elmo     IL   1802
1             Milwaukee     WI  30003
2           New Orleans     LA  58302
3    Cottonwood Heights     UT  35495
4               Chicago     IL  19328

                   Acquiring Institution      Closing Date Updated Date
0             United Fidelity  Bank, fsb         26-May-17    26-Jul-17
1    First-Citizens Bank & Trust Company          5-May-17    26-Jul-17
2                           Whitney Bank         28-Apr-17    26-Jul-17
3                      Cache Valley Bank          3-Mar-17    18-May-17
4                    State Bank of Texas         27-Jan-17    18-May-17

Again, we can import our data with the dates directly parsed.

banks = pd.read_csv(
  "data/banklist.csv", parse_dates=["Closing Date", "Updated Date"]
)

print(banks.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 553 entries, 0 to 552
Data columns (total 7 columns):
 #  Column                Non-Null Count Dtype
--- ------                -------------- -----
 0  Bank Name             553 non-null   object
 1  City                  553 non-null   object
 2  ST                    553 non-null   object
 3  CERT                  553 non-null   int64
 4  Acquiring Institution 553 non-null   object
 5  Closing Date          553 non-null   datetime64[ns]
 6  Updated Date          553 non-null   datetime64[ns]
dtypes: datetime64[ns](2), int64(1), object(4)
memory usage: 30.4+ KB
None

We can parse out the date by obtaining the quarter and year in which the bank closed.

banks = banks.assign(
  closing_quarter=banks['Closing Date'].dt.quarter,
  closing_year=banks['Closing Date'].dt.year
)

closing_year = banks.groupby(['closing_year']).size()

Alternatively, we can calculate how many banks closed in each quarter of each year.

closing_year_q = (
  banks
  .groupby(['closing_year', 'closing_quarter'])
  .size()
)

We can then plot these results as shown in Figure 12.1 and Figure 12.2.
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Figure 12.1 Number of banks closing each year
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Figure 12.2 Number of banks closing each year by quarter



import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax = closing_year.plot()
plt.show()

fig, ax = plt.subplots()
ax = closing_year_q.plot()
plt.show()

12.7 Getting Stock Data

One commonly encountered type of data that contains dates is stock prices. Luckily Python has a way of getting this type of data programmatically with the pandas-datareader library.4

4. pandas-datareader library: https://pandas-datareader.readthedocs.io/

# we can install and use the pandas_datafreader
# to get data from the Internet
import pandas_datareader.data as web

# in this example we are getting stock information about Tesla
tesla = web.DataReader('TSLA', 'yahoo')

print(tesla)

      Date      High       Low      Open         Close \
2017-09-05 23.699333 23.059334 23.586666     23.306000
2017-09-06 23.398666 22.770666 23.299999     22.968666
2017-09-07 23.498667 22.896667 23.065332     23.374001
2017-09-08 23.318666 22.820000 23.266001     22.893333
2017-09-11 24.247334 23.333332 23.423332     24.246000
...        ...        ...        ...               ...
2022-08-25 302.959991 291.600006 302.359985 296.070007
2022-08-26 302.000000 287.470001 297.429993 288.089996
2022-08-29 287.739990 280.700012 282.829987 284.820007
2022-08-30 288.480011 272.649994 287.869995 277.700012
2022-08-31 281.250000 271.809998 280.619995 275.609985

      Date      Volume   Adj Close
2017-09-05  57526500.0   23.306000
2017-09-06  61371000.0   22.968666
2017-09-07  63588000.0   23.374001
2017-09-08  48952500.0   22.893333
2017-09-11 115006500.0   24.246000
       ...         ...         ...
2022-08-25  53230000.0  296.070007
2022-08-26  56905800.0  288.089996
2022-08-29  41864700.0  284.820007
2022-08-30  50541800.0  277.700012
2022-08-31  51788900.0  275.609985

[1257 rows x 6 columns]

# the stock data was saved
# so we do not need to rely on the Internet again
# instead we can load the same data set as a file
tesla = pd.read_csv(
  'data/tesla_stock_yahoo.csv', parse_dates=["Date"]
)

print(tesla)

           Date       Open      High          Low      Close \
0    2010-06-29  19.000000  25.000000   17.540001  23.889999
1    2010-06-30  25.790001  30.420000   23.299999  23.830000
2    2010-07-01  25.000000  25.920000   20.270000  21.959999
3    2010-07-02  23.000000  23.100000   18.709999  19.200001
4    2010-07-06  20.000000  20.000000   15.830000  16.110001
...         ...        ...        ...         ...        ...
1786 2017-08-02 318.940002 327.119995  311.220001 325.890015
1787 2017-08-03 345.329987 350.000000  343.149994 347.089996
1788 2017-08-04 347.000000 357.269989  343.299988 356.910004
1789 2017-08-07 357.350006 359.480011  352.750000 355.170013
1790 2017-08-08 357.529999 368.579987  357.399994 365.220001

     Adj Close    Volume
0    23.889999  18766300
1    23.830000  17187100
2    21.959999   8218800
3    19.200001   5139800
4    16.110001   6866900
...        ...       ...
1786 325.890015 13091500
1787 347.089996 13535000
1788 356.910004  9198400
1789 355.170013  6276900
1790 365.220001  7449837

[1791 rows x 7 columns]

12.8 Subsetting Data Based on Dates

Since we now know how to extract parts of a date out of a column (Section 12.4), we can incorporate these methods to subset our data without having to parse out the individual components manually.

For example, if we want only data for June 2010 from our stock price data set, we can use boolean subsetting.

print(
  tesla.loc[
    (tesla.Date.dt.year == 2010) & (tesla.Date.dt.month ==6)
  ]
)

        Date      Open  High       Low     Close Adj Close \
0 2010-06-29 19.000000 25.00 17.540001 23.889999 23.889999
1 2010-06-30 25.790001 30.42 23.299999 23.830000 23.830000

    Volume
0 18766300
1 17187100

12.8.1 The DatetimeIndex Object

When we are working with datetime data, we often need to set the datetime object to be the dataframe’s index. To this point, we’ve mainly left the dataframe row index to be the row number. We have also seen some side effects that arise because the row index may not always be the row number, such as when we were concatenating dataframes in Chapter 6.

First, let’s assign the Date column as the index.

tesla.index = tesla['Date']
print(tesla.index)

DatetimeIndex(['2010-06-29', '2010-06-30', '2010-07-01',
               '2010-07-02', '2010-07-06', '2010-07-07',
               '2010-07-08', '2010-07-09', '2010-07-12',
               '2010-07-13',
               ...
               '2017-07-26', '2017-07-27', '2017-07-28',
               '2017-07-31', '2017-08-01', '2017-08-02',
               '2017-08-03', '2017-08-04', '2017-08-07',
               '2017-08-08'],
              dtype='datetime64[ns]', name='Date', length=1791, freq=None)

With the index set as a date object, we can now use the date directly to subset rows. For example, we can subset our data based on the year.

print(tesla['2015'])

                 Date       Open       High        Low \
Date
2015-01-02 2015-01-02 222.869995 223.250000 213.259995
2015-01-05 2015-01-05 214.550003 216.500000 207.160004
2015-01-06 2015-01-06 210.059998 214.199997 204.210007
2015-01-07 2015-01-07 213.350006 214.779999 209.779999
2015-01-08 2015-01-08 212.809998 213.800003 210.009995
       ...        ...        ...        ...        ...
2015-12-24 2015-12-24 230.559998 231.880005 228.279999
2015-12-28 2015-12-28 231.490005 231.979996 225.539993
2015-12-29 2015-12-29 230.059998 237.720001 229.550003
2015-12-30 2015-12-30 236.600006 243.630005 235.669998
2015-12-31 2015-12-31 238.509995 243.449997 238.369995

                Close  Adj Close  Volume
Date
2015-01-02 219.309998 219.309998 4764400
2015-01-05 210.089996 210.089996 5368500
2015-01-06 211.279999 211.279999 6261900
2015-01-07 210.949997 210.949997 2968400
2015-01-08 210.619995 210.619995 3442500
...               ...        ...     ...
2015-12-24 230.570007 230.570007  708000
2015-12-28 228.949997 228.949997 1901300
2015-12-29 237.190002 237.190002 2406300
2015-12-30 238.089996 238.089996 3697900
2015-12-31 240.009995 240.009995 2683200

[252 rows x 7 columns]

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/ipykernel_45669/99683229.
py:1: FutureWarning: Indexing a DataFrame with a datetimelike index using
a single string to slice the rows, like 'frame[string]', is deprecated and
will be removed in a future version. Use 'frame.loc[string]' instead.
  print(tesla['2015'])

Alternatively, we can subset the data based on the year and month.

print(tesla['2010-06'])

                 Date      Open  High       Low     Close \
Date
2010-06-29 2010-06-29 19.000000 25.00 17.540001 23.889999
2010-06-30 2010-06-30 25.790001 30.42 23.299999 23.830000

           Adj Close   Volume
Date
2010-06-29 23.889999 18766300
2010-06-30 23.830000 17187100

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/ipykernel_45669/
1492397465.py:1: FutureWarning: Indexing a DataFrame with a datetimelike
index using a single string to slice the rows, like 'frame[string]',
is deprecated and will be removed in a future version. Use
'frame.loc[string]' instead.
  print(tesla['2010-06'])

12.8.2 The TimedeltaIndex Object

Just as we set the index of a dataframe to a datetime to create a DatetimeIndex, so we can do the same thing with a timedelta to create a TimedeltaIndex.

Let’s create a timedelta.

tesla['ref_date'] = tesla['Date'] - tesla['Date'].min()

Now we can assign the timedelta to the index.

tesla.index = tesla['ref_date']

print(tesla)

                 Date      Open        High        Low \
ref_date
0 days     2010-06-29 19.000000   25.000000  17.540001
1 days     2010-06-30 25.790001   30.420000  23.299999
2 days     2010-07-01 25.000000   25.920000  20.270000
3 days     2010-07-02 23.000000   23.100000  18.709999
7 days     2010-07-06 20.000000   20.000000  15.830000
...               ...       ...         ...        ...
2591 days  2017-08-02 318.940002 327.119995 311.220001
2592 days  2017-08-03 345.329987 350.000000 343.149994
2593 days  2017-08-04 347.000000 357.269989 343.299988
2596 days  2017-08-07 357.350006 359.480011 352.750000
2597 days  2017-08-08 357.529999 368.579987 357.399994

           Close Adj Close Volume   ref_date
ref_date
0 days     23.889999  23.889999  18766300    0 days
1 days     23.830000  23.830000  17187100    1 days
2 days     21.959999  21.959999   8218800    2 days
3 days     19.200001  19.200001   5139800    3 days
7 days     16.110001  16.110001   6866900    7 days
...              ...        ...      ...       ...
2591 days 325.890015 325.890015  13091500 2591 days
2592 days 347.089996 347.089996  13535000 2592 days
2593 days 356.910004 356.910004   9198400 2593 days
2596 days 355.170013 355.170013   6276900 2596 days
2597 days 365.220001 365.220001   7449837 2597 days

[1791 rows x 8 columns]

We can now select our data based on these deltas.

print(tesla['0 day': '10 day'])

              Date      Open      High       Low     Close \
ref_date
0 days  2010-06-29 19.000000 25.000000 17.540001 23.889999
1 days  2010-06-30 25.790001 30.420000 23.299999 23.830000
2 days  2010-07-01 25.000000 25.920000 20.270000 21.959999
3 days  2010-07-02 23.000000 23.100000 18.709999 19.200001
7 days  2010-07-06 20.000000 20.000000 15.830000 16.110001
8 days  2010-07-07 16.400000 16.629999 14.980000 15.800000
9 days  2010-07-08 16.139999 17.520000 15.570000 17.459999
10 days 2010-07-09 17.580000 17.900000 16.549999 17.400000

          Adj Close   Volume ref_date
ref_date
0 days    23.889999 18766300    0 days
1 days    23.830000 17187100    1 days
2 days    21.959999  8218800    2 days
3 days    19.200001  5139800    3 days
7 days    16.110001  6866900    7 days
8 days    15.800000  6921700    8 days
9 days    17.459999  7711400    9 days
10 days   17.400000  4050600   10 days

12.9 Date Ranges

Not every data set will have a fixed frequency of values. For example, in our Ebola data set, we do not have an observation for every day in the date range.

ebola = pd.read_csv(
'data/country_timeseries.csv', parse_dates=["Date"]
)

Here, 2015-01-01 is missing from the .head() of the data.

print(ebola.iloc[:, :5])

            Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
0     2015-01-05 289       2776.0           NaN           10030.0
1     2015-01-04 288       2775.0           NaN            9780.0
2     2015-01-03 287       2769.0        8166.0            9722.0
3     2015-01-02 286          NaN        8157.0               NaN
4     2014-12-31 284       2730.0        8115.0            9633.0
..           ... ...          ...           ...               ...
117   2014-03-27   5        103.0           8.0               6.0
118   2014-03-26   4         86.0           NaN               NaN
119   2014-03-25   3         86.0           NaN               NaN
120   2014-03-24   2         86.0           NaN               NaN
121   2014-03-22   0         49.0           NaN               NaN

[122 rows x 5 columns]

It’s common practice to create a date range to .reindex() a data set. We can use the date_range()

head_range = pd.date_range(start='2014-12-31', end='2015-01-05')
print(head_range)

DatetimeIndex(['2014-12-31', '2015-01-01', '2015-01-02',
               '2015-01-03', '2015-01-04', '2015-01-05'],
             dtype='datetime64[ns]', freq='D')

We’ll just work with the first five rows in this example.

ebola_5 = ebola.head()

If we want to set this date range as the index, we need to first set the date as the index.

ebola_5.index = ebola_5['Date']

Next we can .reindex() our data.

ebola_5 = ebola_5.reindex(head_range)

print(ebola_5.iloc[:, :5])

                 Date          Day  Cases_Guinea Cases_Liberia \
2014-12-31 2014-12-31        284.0        2730.0        8115.0
2015-01-01        NaT          NaN           NaN           NaN
2015-01-02 2015-01-02        286.0           NaN        8157.0
2015-01-03 2015-01-03        287.0        2769.0        8166.0
2015-01-04 2015-01-04        288.0        2775.0           NaN
2015-01-05 2015-01-05        289.0        2776.0           NaN

      Cases_SierraLeone
2014-12-31       9633.0
2015-01-01          NaN
2015-01-02          NaN
2015-01-03       9722.0
2015-01-04       9780.0
2015-01-05      10030.0

12.9.1 Frequencies

When we created our head_range, the print statement included a parameter called freq.

In that example, freq was 'D' for “day.” That is, the values in our date range were stepped through using a day-by-day increment. The possible frequencies are reproduced from the Pandas timeseries documentation that is listed in Table 12.2.5

5. Frequency offset aliases: https://pandas.pydata.org/docs/user_guide/timeseries.xhtml#offset-aliases


Table 12.2 Possible Frequencies

[image: Images]



These values can be passed into the freq parameter when calling date_range. For example, January 2, 2022, was a Sunday, and we can create a range consisting of the business days in that week.

# business days during the week of Jan 1, 2022
print(pd.date_range('2022-01-01', '2022-01-07', freq='B'))

DatetimeIndex(['2022-01-03', '2022-01-04', '2022-01-05',
               '2022-01-06', '2022-01-07'],
             dtype='datetime64[ns]', freq='B')

12.9.2 Offsets

Offsets are variations on a base frequency. For example, we can take the business days range that we just created and add an offset such that instead of every business day, data are included for every other business day.

# every other business day during the week of Jan 1, 2022
print(pd.date_range('2022-01-01', '2017-01-07', freq='2B'))

DatetimeIndex([], dtype='datetime64[ns]', freq='2B')

We created this offset by putting a multiplying value before the base frequency. This kind of offset can be combined with other base frequencies as well. For example, we can specify the first Thursday of each month in the year 2022.

print(pd.date_range('2022-01-01', '2022-12-31', freq='WOM-1THU'))

DatetimeIndex(['2022-01-06', '2022-02-03', '2022-03-03',
               '2022-04-07', '2022-05-05', '2022-06-02',
               '2022-07-07', '2022-08-04', '2022-09-01',
               '2022-10-06', '2022-11-03', '2022-12-01'],
             dtype='datetime64[ns]', freq='WOM-1THU')

We can also specify the third Friday of each month.

print(pd.date_range('2022-01-01', '2022-12-31', freq='WOM-3FRI'))

DatetimeIndex(['2022-01-21', '2022-02-18', '2022-03-18',
               '2022-04-15', '2022-05-20', '2022-06-17',
               '2022-07-15', '2022-08-19', '2022-09-16',
               '2022-10-21', '2022-11-18', '2022-12-16'],
             dtype='datetime64[ns]', freq='WOM-3FRI')

12.10 Shifting Values

There are a few reasons why you might want to shift your dates by a certain value. For example, you might need to correct some kind of measurement error in your data. Alternatively, you might want to standardize the start dates for your data so you can compare trends.

Even though our Ebola data isn’t “tidy,” one of the benefits of the data in its current format is that it allows us to plot the outbreak. This plot is shown in Figure 12.3.
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Figure 12.3 Ebola plot of cases and deaths (unshifted dates)



import matplotlib.pyplot as plt

ebola.index = ebola['Date']

fig, ax = plt.subplots()
ax = ebola.plot(ax=ax)
ax.legend(fontsize=7, loc=2, borderaxespad=0.0)
plt.show()

When we’re looking at an outbreak, one useful piece of information is how fast an outbreak is spreading relative to other countries. Let’s look at just a few columns from our Ebola data set.

ebola_sub = ebola[['Day', 'Cases_Guinea', 'Cases_Liberia']]
print(ebola_sub.tail(10))

          Day Cases_Guinea Cases_Liberia
Date
2014-04-04 13        143.0          18.0
2014-04-01 10        127.0           8.0
2014-03-31  9        122.0           8.0
2014-03-29  7        112.0           7.0
2014-03-28  6        112.0           3.0
2014-03-27  5        103.0           8.0
2014-03-26  4         86.0           NaN
2014-03-25  3         86.0           NaN
2014-03-24  2         86.0           NaN
2014-03-22  0         49.0           NaN

You can see that each country’s starting date is different, which makes it difficult to compare the actual slopes between countries when a new outbreak occurs later in time.

In this example, we want all our dates to start from a common 0 day. There are multiple steps to this process.

[image: Images] Since not every date is listed, we need to create a date range of all the dates in our data set.

[image: Images] We need to calculate the difference between the earliest date in our data set, and the earliest valid (non NaN) date in each column.

[image: Images] We can then shift each of the columns by this calculated value.

Before we begin, let’s start with a fresh copy of the Ebola data set. We’ll parse the Date column as a proper date object, and assign this date to the .index. In this example, we are parsing the date and setting it as the index directly.

ebola = pd.read_csv(
  "data/country_timeseries.csv",
  index_col="Date",
  parse_dates=["Date"],
)

print(ebola.iloc[:, :4])

           Day Cases_Guinea Cases_Liberia Cases_SierraLeone
Date
2015-01-05 289       2776.0           NaN           10030.0
2015-01-04 288       2775.0           NaN            9780.0
2015-01-03 287       2769.0        8166.0            9722.0
2015-01-02 286          NaN        8157.0               NaN
2014-12-31 284       2730.0        8115.0            9633.0
...        ...          ...           ...               ...
2014-03-27   5        103.0           8.0               6.0
2014-03-26   4         86.0           NaN               NaN
2014-03-25   3         86.0           NaN               NaN
2014-03-24   2         86.0           NaN               NaN
2014-03-22   0         49.0           NaN               NaN

[122 rows x 4 columns]

First, we need to create the date range to fill in all the missing dates in our data. Then, when we shift our date values downward, the number of days that the data will shift will be the same as the number of rows that will be shifted.

new_idx = pd.date_range(ebola.index.min(), ebola.index.max())

print(new_idx)

DatetimeIndex(['2014-03-22', '2014-03-23', '2014-03-24',
              '2014-03-25', '2014-03-26', '2014-03-27',
              '2014-03-28', '2014-03-29', '2014-03-30',
              '2014-03-31',

              ...
              '2014-12-27', '2014-12-28', '2014-12-29',
              '2014-12-30', '2014-12-31', '2015-01-01',
              '2015-01-02', '2015-01-03', '2015-01-04',
              '2015-01-05'],
             dtype='datetime64[ns]', length=290, freq='D')

Looking at our new_idx, we see that the dates are not in the order that we want. To fix this, we can reverse the order of the index.

new_idx = reversed(new_idx)
print(new_idx)

<reversed object at 0x105aedfc0>

Now we can properly .reindex() our data. This will create rows of NaN values if the index does not exist already in our data set.

ebola = ebola.reindex(new_idx)

If we look at the .head() and .tail() of the resulting data, we see that dates that were originally not listed have been added into the data set, along with a row of NaN missing values. Additionally, the Date column is filled with the NaT value, which is an internal Pandas representation for missing time value (similar to how NaN is used for numeric missing values).

print(ebola.iloc[:, :4])

             Day Cases_Guinea Cases_Liberia Cases_SierraLeone
Date
2015-01-05 289.0       2776.0           NaN           10030.0
2015-01-04 288.0       2775.0           NaN            9780.0
2015-01-03 287.0       2769.0        8166.0            9722.0
2015-01-02 286.0          NaN        8157.0               NaN
2015-01-01   NaN          NaN           NaN               NaN
...          ...          ...           ...               ...
2014-03-26   4.0         86.0           NaN               NaN
2014-03-25   3.0         86.0           NaN               NaN
2014-03-24   2.0         86.0           NaN               NaN
2014-03-23   NaN          NaN           NaN               NaN
2014-03-22   0.0         49.0           NaN               NaN

[290 rows x 4 columns]

Now that we’ve created our date range and assigned it to the index, our next step is to calculate the difference between the earliest date in our data set and the earliest valid (non-missing) date in each column. To perform this calculation, we can use the Series method called .last_valid_index(), which returns the label (index) of the last non-missing or non-null value. An analogous method called .first_valid_index() returns the first non-missing or non-null value. Since we want to perform this calculation across all the columns, we can use the .apply() method.

last_valid = ebola.apply(pd.Series.last_valid_index)
print(last_valid)

Day                 2014-03-22
Cases_Guinea        2014-03-22
Cases_Liberia       2014-03-27
Cases_SierraLeone   2014-03-27
Cases_Nigeria       2014-07-23
                         ...
Deaths_Nigeria      2014-07-23
Deaths_Senegal      2014-09-07
Deaths_UnitedStates 2014-10-01
Deaths_Spain        2014-10-08
Deaths_Mali         2014-10-22
Length: 17, dtype: datetime64[ns]

Next, we want to get the earliest date in our data set.

earliest_date = ebola.index.min()
print(earliest_date)

2014-03-22 00:00:00

We then subtract this date from each of our last_valid dates.

shift_values = last_valid - earliest_date
print(shift_values)

Day                   0 days
Cases_Guinea          0 days
Cases_Liberia         5 days
Cases_SierraLeone     5 days
Cases_Nigeria       123 days
                      ...
Deaths_Nigeria      123 days
Deaths_Senegal      169 days
Deaths_UnitedStates 193 days
Deaths_Spain        200 days
Deaths_Mali         214 days
Length: 17, dtype: timedelta64[ns]

Finally, we can iterate through each column, using the .shift() method to shift the columns down by the corresponding value in shift_values. Note that the values in shift_values are all positive. If they were negative (if we flipped the order of our subtraction), this operation would shift the values up.

ebola_dict = {}

for idx, col in enumerate(ebola):
    d = shift_values[idx].days
    shifted = ebola[col].shift(d)
    ebola_dict[col] = shifted

#print(ebola_dict)

Since we have a dict of values, we can convert it to a dataframe using the Pandas DataFrame function.

ebola_shift = pd.DataFrame(ebola_dict)

The last row in each column now has a value; that is, the columns have been shifted down appropriately.

print(ebola_shift.tail())

           Day Cases_Guinea Cases_Liberia  Cases_SierraLeone \
Date
2014-03-26 4.0         86.0           8.0                2.0
2014-03-25 3.0         86.0           NaN                NaN
2014-03-24 2.0         86.0           7.0                NaN
2014-03-23 NaN          NaN           3.0                2.0
2014-03-22 0.0         49.0           8.0                6.0

           Cases_Nigeria Cases_Senegal  Cases_UnitedStates \
Date
2014-03-26           1.0           NaN                1.0
2014-03-25           NaN           NaN                NaN
2014-03-24           NaN           NaN                NaN
2014-03-23           NaN           NaN                NaN
2014-03-22           0.0           1.0                1.0

              Cases_Spain Cases_Mali Deaths_Guinea Deaths_Liberia \
Date
2014-03-26            1.0        NaN          62.0            4.0
2014-03-25            NaN        NaN          60.0            NaN
2014-03-24            NaN        NaN          59.0            2.0
2014-03-23            NaN        NaN           NaN            3.0
2014-03-22            1.0        1.0          29.0            6.0

            Deaths_SierraLeone Deaths_Nigeria Deaths_Senegal \
Date
2014-03-26                 2.0            1.0            NaN
2014-03-25                 NaN            NaN            NaN
2014-03-24                 NaN            NaN            NaN
2014-03-23                 2.0            NaN            NaN
2014-03-22                 5.0            0.0            0.0

            Deaths_UnitedStates Deaths_Spain Deaths_Mali
Date
2014-03-26                  0.0          1.0         NaN
2014-03-25                  NaN          NaN         NaN
2014-03-24                  NaN          NaN         NaN
2014-03-23                  NaN          NaN         NaN
2014-03-22                  0.0          1.0         1.0

Finally, since the indices are no longer valid across each row, we can remove them, and then assign the correct index, which is the Day. Note that Day no longer represents the first day of the entire outbreak, but rather the first day of an outbreak for the given country.

ebola_shift.index = ebola_shift['Day']
ebola_shift = ebola_shift.drop(['Day'], axis="columns")

print(ebola_shift.tail())

      Cases_Guinea Cases_Liberia Cases_SierraLeone Cases_Nigeria \
Day
4.0           86.0           8.0               2.0           1.0
3.0           86.0           NaN               NaN           NaN
2.0           86.0           7.0               NaN           NaN
NaN            NaN           3.0               2.0           NaN
0.0           49.0           8.0               6.0           0.0

    Cases_Senegal Cases_UnitedStates Cases_Spain Cases_Mali \
Day
4.0           NaN                1.0         1.0        NaN
3.0           NaN                NaN         NaN        NaN
2.0           NaN                NaN         NaN        NaN
NaN           NaN                NaN         NaN        NaN
0.0           1.0                1.0         1.0        1.0

     Deaths_Guinea Deaths_Liberia Deaths_SierraLeone \
Day
4.0           62.0            4.0                2.0
3.0           60.0            NaN                NaN
2.0           59.0            2.0                NaN
NaN            NaN            3.0                2.0
0.0           29.0            6.0                5.0

    Deaths_Nigeria Deaths_Senegal Deaths_UnitedStates \
Day
4.0            1.0            NaN                 0.0
3.0            NaN            NaN                 NaN
2.0            NaN            NaN                 NaN
NaN            NaN            NaN                 NaN
0.0            0.0            0.0                 0.0

   Deaths_Spain Deaths_Mali
Day
4.0         1.0         NaN
3.0         NaN         NaN
2.0         NaN         NaN
NaN         NaN         NaN
0.0         1.0         1.0

12.11 Resampling

Resampling converts a datetime from one frequency to another frequency. Three types of resampling can occur:

[image: Images] Downsampling: from a higher frequency to a lower frequency (e.g., daily to monthly)

[image: Images] Upsampling: from a lower frequency to a higher frequency (e.g., monthly to daily)

[image: Images] No change: frequency does not change (e.g., every first Thursday of the month to the last Friday of the month)

The values we can pass into .resample() are listed in Table 12.2.

# downsample daily values to monthly values
# since we have multiple values, we need to aggregate the results 
# here we will use the mean

down = ebola.resample('M').mean()
print(down.iloc[:,  :5])

                  Day Cases_Guinea   Cases_Liberia \
Date
2014-03-31   4.500000    94.500000        6.500000
2014-04-30  24.333333   177.818182       24.555556
2014-05-31  51.888889   248.777778       12.555556
2014-06-30  84.636364   373.428571       35.500000
2014-07-31 115.700000   423.000000      212.300000
...               ...          ...             ...
2014-09-30 177.500000   967.888889     2815.625000
2014-10-31 207.470588  1500.444444     4758.750000
2014-11-30 237.214286  1950.500000     7039.000000
2014-12-31 271.181818  2579.625000     7902.571429
2015-01-31 287.500000  2773.333333     8161.500000

     Cases_SierraLeone  Cases_Nigeria
Date
2014-03-31    3.333333            NaN
2014-04-30    2.200000            NaN
2014-05-31    7.333333            NaN
2014-06-30  125.571429            NaN
2014-07-31  420.500000       1.333333
...                ...            ...
2014-09-30 1726.000000      20.714286
2014-10-31 3668.111111      20.000000
2014-11-30 5843.625000      20.000000
2014-12-31 8985.875000      20.000000
2015-01-31 9844.000000            NaN

[11 rows x 5 columns]

# here we will upsample our downsampled value
# notice how missing dates are populated,
# but they are filled in with missing values
up = down.resample('D').mean()
print(up.iloc[:, :5])

             Day Cases_Guinea Cases_Liberia Cases_SierraLeone \
Date
2014-03-31   4.5    94.500000           6.5          3.333333
2014-04-01   NaN          NaN           NaN               NaN
2014-04-02   NaN          NaN           NaN               NaN
2014-04-03   NaN          NaN           NaN               NaN
2014-04-04   NaN          NaN           NaN               NaN
...          ...          ...           ...               ...
2015-01-27   NaN          NaN           NaN               NaN
2015-01-28   NaN          NaN           NaN               NaN
2015-01-29   NaN          NaN           NaN               NaN
2015-01-30   NaN          NaN           NaN               NaN
2015-01-31 287.5  2773.333333        8161.5       9844.000000

     Cases_Nigeria
Date
2014-03-31     NaN
2014-04-01     NaN
2014-04-02     NaN
2014-04-03     NaN
2014-04-04     NaN
...            ...
2015-01-27     NaN
2015-01-28     NaN
2015-01-29     NaN
2015-01-30     NaN
2015-01-31     NaN

[307 rows x 5 columns]

12.12 Time Zones

Don’t try to write your own time zone converter. As Tom Scott explains in a “Computerphile” video, “That way lies madness.”6 There are many things you probably did not even think to consider when working with different time zones. For example, not every country implements daylight savings time, and even those that do, may not necessarily change the clocks on the same day of the year. And don’t forget about leap years and leap seconds! Luckily Python has a library specifically designed to work with time zones7, Pandas also wraps this library when working with time zones.

6. The problem with time and time zones: Computerphile: www.youtube.com/watch?v=-5wpm-gesOY

7. Documentation for pytz:a https://pythonhosted.org/pytz/

import pytz

There are many time zones available in the library.

print(len(pytz.all_timezones))

594

Here are the U.S. time zones:

import re
regex = re.compile(r'^US')
selected_files = filter(regex.search, pytz.common_timezones)
print(list(selected_files))

['US/Alaska', 'US/Arizona', 'US/Central', 'US/Eastern', 'US/Hawaii',
' US/Mountain', 'US/Pacific']

The easiest way to interact with time zones in Pandas is to use the string names given in pytz.all_timezones().

One way to illustrate time zones is to create two timestamps using the Pandas Timestamp function. For example, if there was a flight between the JFK and LAX airports that departed at 7:00 AM from New York and landed at 9:57 AM in Los Angeles. We can encode these times with the proper time zone.

# 7AM Eastern
depart = pd.Timestamp('2017-08-29 07:00', tz='US/Eastern')
print(depart)

2017-08-29 07:00:00-04:00

arrive = pd.Timestamp('2017-08-29 09:57')
print(arrive)

2017-08-29 09:57:00

Another way we can encode a time zone is by using the .tz_localize() method on an

“empty” timestamp.

arrive = arrive.tz_localize('US/Pacific')
print(arrive)

2017-08-29 09:57:00-07:00

We can convert the arrival time back to the Eastern time zone to see what the time would be on the East Coast when the flight arrives.

print(arrive.tz_convert('US/Eastern'))

2017-08-29 12:57:00-04:00

We can also perform operations on time zones. Here we look at the difference between the times to get the flight duration.

duration = arrive - depart
print(duration)

0 days 05:57:00

12.13 Arrow for Better Dates and Times

If you do end up working with date and time columns often, I would suggest looking into the arrow library. You can find the documentation page here: https://arrow.readthedocs.io/en/latest/ Do not confuse this Arrow library with the Apache Arrow project for language-independent dataframe formats.

Arrow is a separate library that needs to be installed, but works slightly different from the methods shown in this chapter. However, it does do a better job handling time zones. See this post by Paul Ganssle for more information about the benefits of arrow over pytz: https://blog.ganssle.io/articles/2018/03/pytz-fastest-footgun.xhtml

Conclusion

Pandas provides a series of convenient methods and functions when we are working with dates and times because these types of data are used so often with time-series data. A common example of time-series data is stock prices, but other examples include observational and simulated data. These convenient Pandas functions and methods allow you to easily work with date objects without having to resort to string manipulation and parsing.



Part IV

Data Modeling

Chapter 13 Linear Regression (Continuous Outcome Variable)

Chapter 14 Generalized Linear Models

Chapter 15 Survival Analysis

Chapter 16 Model Diagnostics

Chapter 17 Regularization

Chapter 18 Clustering

This part of the book follows the methods described in Jared Lander’s R for Everyone. The rationale is that since you have learned the methods of data manipulation in Python using Pandas, you can save out the cleaned data set if you need to use a method from another analytics language.

This part covers many of the basic modeling techniques and serves as an introduction to data analytics and machine learning. Other great references are:

[image: Images] Andreas Müller and Sarah Guido’s Introduction to Machine Learning with Python

[image: Images] Sebastian Raschka and Vahid Mirjalili’s Python Machine Learning 

Many of the techniques covered so far in the book apply to figuring out what kind of information is stored in our columns, in particular, the variable we are trying to model or predict. If our data has an outcome variable, we can use supervised modeling techniques. If our variable of interest is continuous, we would use a linear regression model (Chapter 13). If our outcome variable is binary we would use a logistic regression model, if it is count data, we would use a Poisson model (Chapter 14). Survival models are used when we are looking for an outcome of interest, but also have censoring (Chapter 15). When we are fitting models for prediction, we sometimes need to find a way to pick the “best” model, this is when we have to compare model diagnostics (Chapter 16).

If we are solely interested in prediction, and not inference, we can employ regularization techniques to make our model more numerically stable (Chapter 17). If we do not have an outcome variable we can test our model against, we would use some kind of unsupervised modeling technique, such as clustering (Chapter 18).



13

Linear Regression (Continuous Outcome Variable)

13.1 Simple Linear Regression

The goal of linear regression is to draw a straight-line relationship between a response variable (also known as an outcome or dependent variable) and a predictor variable (also known as a feature, covariate, or independent variable).

Let’s take another look at our tips data set.

import pandas as pd
import seaborn as sns

tips = sns.load_dataset('tips')
print(tips)

    total_bill  tip     sex smoker   day    time  size
0        16.99 1.01  Female     No   Sun  Dinner     2
1        10.34 1.66    Male     No   Sun  Dinner     3
2        21.01 3.50    Male     No   Sun  Dinner     3
3        23.68 3.31    Male     No   Sun  Dinner     2
4        24.59 3.61  Female     No   Sun  Dinner     4
..         ...  ...     ...    ...   ...     ...   ...
239      29.03 5.92    Male     No   Sat  Dinner     3
240      27.18 2.00  Female    Yes   Sat  Dinner     2
241      22.67 2.00    Male    Yes   Sat  Dinner     2
242      17.82 1.75    Male     No   Sat  Dinner     2
243      18.78 3.00  Female     No  Thur  Dinner     2

[244 rows x 7 columns]

In our simple linear regression, we’d like to see how the total_bill relates to or predicts the tip.

13.1.1 With statsmodels

We can use the statsmodels library to perform our simple linear regression. We will use the formula API (application programming interface) from statsmodels. This is a new library we are working with.

import statsmodels.formula.api as smf

To perform this simple linear regression, we use the ols() function, which computes the ordinary least squares value; it is one method to estimate parameters in a linear regression. Recall that the formula for a line is y = mx + b, where y is our response variable, x is our predictor, b is the intercept, and m is the slope, the parameter we are estimating.

The formula notation has two parts, separated by a tilde, ~. To the left of the tilde is the response variable, and to the right of the tilde are the predictor(s).

model = smf.ols(formula='tip ~ total_bill', data=tips)

Once we have specified our model, we can fit the data to the model by using the fit method.

results = model.fit()

To look at our results, we can call the .summary() method on the results.

print(results.summary())

                     OLS Regression Results
==========================================================================
Dep. Variable:                   tip   R-squared:                    0.457
Model:                           OLS   Adj. R-squared:               0.454
Method:                Least Squares   F-statistic:                  203.4
Date:               Thu, 01 Sep 2022   Prob (F-statistic):        6.69e-34
Time:                       01:55:45   Log-Likelihood:             -350.54
No. Observations:                244   AIC:                          705.1
Df Residuals:                    242   BIC:                          712.1
Df Model:                          1
Covariance Type:           nonrobust
==========================================================================
                  coef   std err        t     P>|t|     [0.025     0.975]
--------------------------------------------------------------------------
Intercept       0.9203     0.160    5.761     0.000      0.606      1.235
total_bill      0.1050     0.007   14.260     0.000      0.091      0.120
==========================================================================
Omnibus:                   20.185  Durbin-Watson:            2.151
Prob(Omnibus):              0.000  Jarque-Bera (JB):        37.750
Skew:                       0.443  Prob(JB):              6.35e-09
Kurtosis:                   4.711  Cond. No.                  53.0
==========================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Here we can see the Intercept of the model and the total_bill. We can use these parameters in our formula for the line, y = (0.105)x + 0.920. To interpret these numbers, we say: for every one unit increase in total_bill (i.e., every time the bill increases by a dollar), the tip increases by 0.105 (i.e., 10.5 cents).

If we just want the coefficients, we can call the .params attribute on the results.

print(results.params)

Intercept  0.920270
total_bill 0.105025
dtype: float64

Depending on your field, you may also need to report a confidence interval, which identifies the possible values the estimated value can take on. The confidence interval includes the values less than [0.025 0.975]. We can also extract these values using the .conf_int() method.

print(results.conf_int())

                  0        1
Intercept  0.605622 1.234918
total_bill 0.090517 0.119532

13.1.2 With scikit-learn

We can also use the sklearn library to fit various machine learning models. To perform the same analysis we just did, we need to import the linear_model module from this library.

from sklearn import linear_model

We can then create our linear regression object.

# create our LinearRegression object
lr = linear_model.LinearRegression()

Next, we need to specify the predictor, X, and the response, y. To do this, we pass in the columns we want to use for the model.


Note

Note the parameters are upper-case letter X and lower-case letter y.

This comes from mathematical notation, where the predictors, X are a  matrix of values, and the response, y, is a vector of values.



Too simple of an example

If we simply pass in a single variable into the X parameter, we actually get an error.

# note it is an uppercase X
# and a lowercase y
# this will fail because our X has only 1 variable
predicted = lr.fit(X=tips['total_bill'], y=tips['tip'])

ValueError: Expected 2D array, got 1D array instead:
array=[16.99 10.34 21.01 23.68 24.59 25.29  8.77 26.88 15.04 14.78 10.27 35.26
 15.42 18.43 14.83 21.58 10.33 16.29 16.97 20.65 17.92 20.29 15.77 39.42
 19.82 17.81 13.37 12.69 21.7  19.65  9.55 18.35 15.06 20.69 17.78 24.06
 16.31 16.93 18.69 31.27 16.04 17.46 13.94  9.68 30.4  18.29 22.23 32.4
 28.55 18.04 12.54 10.29 34.81  9.94 25.56 19.49 38.01 26.41 11.24 48.27
 20.29 13.81 11.02 18.29 17.59 20.08 16.45  3.07 20.23 15.01 12.02 17.07
 26.86 25.28 14.73 10.51 17.92 27.2  22.76 17.29 19.44 16.66 10.07 32.68
 15.98 34.83 13.03 18.28 24.71 21.16 28.97 22.49  5.75 16.32 22.75 40.17
 27.28 12.03 21.01 12.46 11.35 15.38 44.3  22.42 20.92 15.36 20.49 25.21
 18.24 14.31 14.    7.25 38.07 23.95 25.71 17.31 29.93 10.65 12.43 24.08
 11.69 13.42 14.26 15.95 12.48 29.8   8.52 14.52 11.38 22.82 19.08 20.27
 11.17 12.26 18.26  8.51 10.33 14.15 16.   13.16 17.47 34.3  41.19 27.05
 16.43  8.35 18.64 11.87  9.78  7.51 14.07 13.13 17.26 24.55 19.77 29.85
 48.17 25.   13.39 16.49 21.5 12.66  16.21 13.81 17.51 24.52 20.76 31.71
 10.59 10.63 50.81 15.81  7.25 31.85 16.82 32.9  17.89 14.48  9.6  34.63
 34.65 23.33 45.35 23.17 40.55 20.69 20.9  30.46 18.15 23.1  15.69 19.81
 28.44 15.48 16.58  7.56 10.34 43.11 13.   13.51 18.71 12.74 13.   16.4
 20.53 16.47 26.59 38.73 24.27 12.76 30.06 25.89 48.33 13.27 28.17 12.9
 28.15 11.59  7.74 30.14 12.16 13.42  8.58 15.98 13.42 16.27 10.09 20.45
 13.28 22.12 24.01 15.69 11.61 10.77 15.53 10.07 12.6  32.83 35.83 29.03
 27.18 22.67 17.82 18.78].
Reshape your data either using array.reshape(-1, 1) if your data has a
single feature or array.reshape(1, -1) if it contains a single sample.

Since sklearn is built to take numpy arrays, there will be times when you have to do some data manipulations to pass your dataframe into sklearn. The error message in the preceding output essentially tells us the matrix passed is not in the correct shape. We need to reshape our inputs. Depending on whether we have a single feature (which is the case here) or a single sample (i.e., multiple observations), we will specify reshape(-1, 1) or reshape(1, -1), respectively.

Calling .reshape() directly on the column will raise either a DeprecationWarning (Pandas 0.17), a ValueError (Pandas 0.19), or an AttributeError depending on the version of Pandas being used.

# this will fail
predicted = lr.fit(
    X=tips["total_bill"].reshape( -1, 1), y=tips["tip"]
)

AttributeError: 'Series' object has no attribute 'reshape'

To properly reshape our data, we must use the .values attribute (otherwise you may get another error or warning). When we call .values on a Pandas dataframe or series, we get the numpy ndarray representation of the data.

# we fix the data by putting it in the correct shape for sklearn
predicted = lr.fit(
    X=tips["total_bill"].values.reshape(-1, 1), y=tips["tip"]
)

Since sklearn works on numpy ndarrays, you may see code that explicitly passes in the numpy vector into the X or y parameter: y=tips['tip'].values.

Unfortunately, sklearn doesn’t provide us with the nice summary tables that statsmodels does. This reflects differing schools of thought: statistics and computer science in contrast to prediction and machine learning. To obtain the coefficients in sklearn, we call the .coef_ attribute on the fitted model.

print(predicted.coef_)

[0.10502452]

To get the intercept, we call the .intercept_ attribute.

print(predicted.intercept_)

0.920269613554674

Notice that we get the same results as we did with statsmodels. That is, people in our data set are tipping about 10% of their bill amount.

13.2 Multiple Regression

In simple linear regression, one predictor is regressed on a single response variable. Alternatively, we can use multiple regression to put multiple predictors in a model.

13.2.1 With statsmodels

Fitting a multiple regression model to a data set is very similar to fitting a simple linear regression model. Using the formula interface, we add the other covariates to the right-hand side.

# note the .fit() method chain at the end
model = smf.ols(formula="tip ~ total_bill + size", data=tips).fit()

print(model.summary())

                          OLS Regression Results
==========================================================================
Dep. Variable:                    tip  R-squared:                    0.468
Model:                            OLS  Adj. R-squared:               0.463
Method:                 Least Squares  F-statistic:                  105.9
Date:                Thu, 01 Sep 2022  Prob (F-statistic):        9.67e-34
Time:                        01:55:46  Log-Likelihood:             -347.99
No. Observations:                 244  AIC:                          702.0
Df Residuals:                     241  BIC:                          712.5
Df Model:                           2
Covariance Type:            nonrobust
==========================================================================
                 coef    std err         t       P>|t|      [0.025  0.975]
--------------------------------------------------------------------------
Intercept      0.6689      0.194     3.455       0.001       0.288   1.050
total_bill     0.0927      0.009    10.172       0.000       0.075   0.111
size           0.1926      0.085     2.258       0.025       0.025   0.361
==========================================================================
Omnibus:                      24.753   Durbin-Watson:                2.100
Prob(Omnibus):                 0.000   Jarque-Bera (JB):            46.169
Skew:                          0.545   Prob(JB):                  9.43e-11
Kurtosis:                      4.831   Cond. No.                      67.6
==========================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The interpretations are exactly the same as before, except each parameter is interpreted “with all other variables held constant.” That is, for every one unit increase (dollar) in total_bill, the tip increases by 0.09 (i.e., 9 cents) as long as the size of the group does not change.

13.2.2 With Scikit-Learn

The syntax for multiple regression in sklearn is very similar to the syntax for simple linear regression with this library. To add more features to the model, we pass in the columns we want to use.

lr = linear_model.LinearRegression()

# since we are performing multiple regression
# we no longer need to reshape our X values
predicted = lr.fit (X=tips[["total_bill", "size"]], y=tips["tip"])

print(predicted.coef_)

[0.09271334 0.19259779]

We can get the intercept from the model just as we did earlier.

print(predicted.intercept_)

0.6689447408125035

13.3 Models with Categorical Variables

So far, we have used only continuous predictors in our model. If we look at the .info() method of our tips data set, however, we can see that our data includes categorical variables (you can also use the .dtypes attribute).

print(tips.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
#   Column      Non-Null Count Dtype
--- ------      -------------- -----
 0  total_bill  244 non-null   float64
 1  tip         244 non-null   float64
 2  sex         244 non-null   category
 3  smoker      244 non-null   category
 4  day         244 non-null   category
 5  time        244 non-null   category
 6  size        244 non-null   int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
None

When we want to model a categorical variable, we have to create “dummy variables”. That is, each unique value in the category becomes a new binary feature. These are also called “one-hot encoding”, depending on the field you’re in. For example, sex in our data can hold one of two values, Female or Male.

print(tips.sex.unique())

['Female', 'Male']
Categories (2, object): ['Male', 'Female']

13.3.1 Categorical Variables in statsmodels

statsmodels will automatically create dummy variables for us. To avoid multicollinearity, we typically drop one of the dummy variables. That is, if we have a column that indicates whether an individual is female, then we know if the person is not female (in our data), that person must be male. In such a case, we can effectively drop the dummy variable that codes for males and still have the same information.

Here’s the model that uses all the variables in our data.

model = smf.ols(
   formula ="tip ~ total_bill + size + sex + smoker + day + time",
   data=tips,
).fit()

We can see from the summary that statsmodels automatically creates dummy variables as well as drops the reference variable to avoid multicollinearity.

print(model.summary())

                    OLS Regression Results
==========================================================================
Dep. Variable:                   tip  R-squared:                     0.470
Model:                           OLS  Adj. R-squared:                0.452
Method:                Least Squares  F-statistic:                   26.06
Date:               Thu, 01 Sep 2022  Prob (F-statistic):         1.20e-28
Time:                       01:55:46  Log-Likelihood:              -347.48
No. Observations:                244  AIC:                           713.0
Df Residuals:                    235  BIC:                           744.4
Df Model:                          8
Covariance Type:           nonrobust
==========================================================================
                  coef   std err      t     P>|t|      [0.025      0.975]
--------------------------------------------------------------------------
Intercept       0.5908     0.256   2.310    0.022     0.087         1.095
sex[T.Female]   0.0324     0.142   0.229    0.819    -0.247         0.311
smoker[T.No]    0.0864     0.147   0.589    0.556    -0.202         0.375
day[T.Fri]      0.1623     0.393   0.412    0.680    -0.613         0.937
day[T.Sat]      0.0408     0.471   0.087    0.931    -0.886         0.968
day[T.Sun]      0.1368     0.472   0.290    0.772    -0.793         1.066
time[T.Dinner] -0.0681     0.445  -0.153    0.878    -0.944         0.808
total_bill      0.0945     0.010   9.841    0.000     0.076         0.113
size            0.1760     0.090   1.966    0.051    -0.000         0.352
=======================================================================
Omnibus:                  27.860   Durbin-Watson:                 2.096
Prob(Omnibus):             0.000   Jarque-Bera (JB):             52.555
Skew:                      0.607   Prob(JB):                   3.87e-12
Kurtosis:                  4.923   Cond. No.                       281.
==========================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The interpretation of the continuous (i.e., numeric) parameters is the same as before. However, our interpretation of categorical variables must be stated in relation to the reference variable (i.e., the dummy variable that was dropped from the analysis). For example, the coefficient for sex[T.Female] is 0.0324. We interpret this value in relation to the reference value, Male; that is, we say that when the sex of the server “changes” from Male to Female, the tip increases by 0.324. For the day variable:

print(tips.day.unique())

['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur', 'Fri', 'Sat', 'Sun']

We see that our .summary() is missing Thur, so that is the reference variable to use to interpret the coefficients.

13.3.2 Categorical Variables in Scikit-learn

We have to manually create our dummy variables for sklearn. Luckily, Pandas has a function, .get_dummies(), that will do this work for us. This function converts all the categorical variables into dummy variables automatically, so we do not need to pass in individual columns one at a time. sklearn has a OneHotEncoder function that does something similar.

13.3.2.1 Dummy Variables in Pandas

The get_dummies() function in Pandas can create dummy variable encoding of a dataframe for us.

tips_dummy = pd.get_dummies(
    tips[["total_bill", "size","sex", "smoker", "day", "time"]]
)

print(tips_dummy)

   total_bill  size  sex_Male  sex_Female  smoker_Yes  smoker_No  \
0       16.99     2         0           1           0          1
1       10.34     3         1           0           0          1
2       21.01     3         1           0           0          1
3       23.68     2         1           0           0          1
4       24.59     4         0           1           0          1
..        ...   ...       ...         ...         ...        ...
239     29.03     3         1           0           0          1
240     27.18     2         0           1           1          0
241     22.67     2         1           0           1          0
242     17.82     2         1           0           0          1
243     18.78     2         0           1           0          1

    day_Thur  day_Fri  day_Sat  day_Sun  time_Lunch  time_Dinner
0          0        0        0        1           0            1
1          0        0        0        1           0            1
2          0        0        0        1           0            1
3          0        0        0        1           0            1
4          0        0        0        1           0            1
..       ...      ...     ...       ...         ...          ...
239        0        0        1        0           0            1
240        0        0        1        0           0            1
241        0        0        1        0           0            1
242        0        0        1        0           0            1
243        1        0        0        0           0            1

[244 rows x 12 columns]

To drop the reference variable, we can pass in drop_first=True.

x_tips_dummy_ref = pd.get_dummies(
    tips[["total_bill", "size", "sex", "smoker", "day", "time"]],
    drop_first=True,
)

print(x_tips_dummy_ref)

     total_bill  size  sex_Female  smoker_No  day_Fri  day_Sat  \
0         16.99     2           1          1        0        0
1         10.34     3           0          1        0        0
2         21.01     3           0          1        0        0
3         23.68     2           0          1        0        0
4         24.59     4           1          1        0        0
..          ...   ...         ...        ...      ...      ...
239       29.03     3           0          1        0        1
240       27.18     2           1          0        0        1
241       22.67     2           0          0        0        1
242       17.82     2           0          1        0        1
243       18.78     2           1          1        0        0

     day_Sun   time_Dinner
0          1             1
1          1             1
2          1             1
3          1             1
4          1             1
..       ...           ...
239        0             1
240        0             1
241        0             1
242        0             1
243        0             1

[244 rows x 8 columns]

We fit the model just as we did earlier.

lr = linear_model.LinearRegression()
predicted = lr.fit(X=x_tips_dummy_ref, y=tips["tip"])

We also obtain the coefficients in the same way.

print(predicted.intercept_)

0.5908374259513787

print(predicted.coef_)

[ 0.09448701 0.175992 0.03244094 0.08640832 0.1622592 0.04080082
  0.13677854 -0.0681286 ]

13.3.2.2 Keeping Index Labels From sklearn

One of the annoying things when trying to interpret a model from sklearn is that the coefficients are not labeled. The labels are omitted because the numpy ndarray is unable to store this type of metadata. If we want our output to resemble something from statsmodels, we need to manually store the labels and append the coefficients to them.

import numpy as np

# create and fit the model
lr = linear_model.LinearRegression()
predicted = lr.fit (X=x_tips_dummy_ref, y=tips["tip"])

# get the intercept along with other coefficients
values = np.append(predicted.intercept_, predicted.coef_)

# get the names of the values
names = np.append("intercept", x_tips_dummy_ref.columns)

# put everything in a labeled dataframe
results = pd.DataFrame({"variable": names, "coef": values})

print(results)

      variable      coef
0    intercept  0.590837
1   total_bill  0.094487
2         size  0.175992
3   sex_Female  0.032441
4    smoker_No  0.086408
5      day_Fri  0.162259
6      day_Sat  0.040801
7      day_Sun  0.136779
8  time_Dinner -0.068129

13.4 One-hot Encoding in scikit-learn with Transformer Pipelines

Scikit-learn has its own way of processing data for analysis using “pipelines”. We can use the one-hot encoding transformer in a pipeline to process our data in scikit-learn, instead of pandas, before we fit our model.

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline

We first need to specify which columns we want to process, here we are only looking to work with categorical variables.

categorical_features = ["sex", "smoker", "day", "time"]
categorical_transformer = OneHotEncoder(drop="first")

Once we have the columns and the processing step we want, we can then pass the steps into ColumnTransformer(). Since we want to still have the numeric variables in the final model, but didn’t specify a processing step for them, we pass in remainder="passthrough" to make sure those variables not specified in the transformers step still make it to the final model.

preprocessor = ColumnTransformer(
  transformers =[
    ("cat", categorical_transformer, categorical_features),
  ],
  remainder ="passthrough", # keep the numeric columns
)

Finally, we can create a Pipeline() with all the preprocessing steps, and then to the model we want.

pipe = Pipeline(
  steps =[
     ("preprocessor", preprocessor),
     ("lr", linear_model.LinearRegression()),
  ]
)

Finally, we can fit our model just like before.

pipe.fit(
  X=tips[["total_bill", "size", "sex", "smoker", "day", "time"]],
  y=tips["tip"],
)

Pipeline(steps=[('preprocessor',
              ColumnTransformer(remainder='passthrough',
                                transformers=[('cat',
                                               OneHotEncoder(drop='first'),
                                               ['sex', 'smoker', 'day',
                                                'time'])])),
             ('lr', LinearRegression())])

We can’t get the .intercept_ and coef_ because the Pipeline(), is not a LinearRegression() object.

print(type(pipe))

<class 'sklearn.pipeline.Pipeline'>

We need to access the coefficients in an additional step. This is because not all models will have intercept_ and coef_ values, the Pipeline() is a generic function that works with any model within the sklearn library.

# combine the intercept and coefficients into single vector
coefficients = np.append(
  pipe.named_steps["lr"].intercept_, pipe.named_steps["lr"].coef_
)

# combine the intercept text with the other feature names
labels = np.append(
  ["intercept"], pipe[ :-1].get_feature_names_out()
)

# create a dataframe of all the results
coefs = pd.DataFrame({"variable": labels, "coef": coefficients})

print(coefs)

                variable      coef
0              intercept  0.803817
1          cat__sex_Male -0.032441
2        cat__smoker_Yes -0.086408
3           cat__day_Sat -0.121458
4           cat__day_Sun -0.025481
5          cat__day_Thur -0.162259
6        cat__time_Lunch  0.068129
7  remainder__total_bill  0.094487
8        remainder__size  0.175992

Note that here the coefficients are not exactly the same as the statsmodels values because the reference variable is different.

Conclusion

This chapter introduced the basics of fitting models using the statsmodels and sklearn libraries. The concepts of adding features to a model and creating dummy variables are constantly used when fitting models. Thus far, we have focused on fitting linear models, where the response variable is a continuous variable. In later chapters, we’ll fit models where the response variable is not a continuous variable.



14

Generalized Linear Models

Not every response variable will be continuous, so a linear regression will not be the correct model in every circumstance. Some outcomes may contain binary data (e.g., sick and not sick), or even count data (e.g., how many heads will I get when I flip a coin). A general class of models called generalized linear models (GLM) can account for these types of data, yet still use a linear combination of predictors.

About this Chapter

This chapter has been improved from its first edition version in a few ways. First, the data set example was changed to use the titanic data set from the seaborn library. The original code from the New York American Community Survey (ACS) was replaced with a new data set to make make the model outputs more comparable across multiple libraries and programming languages (Appendix Z).

Next, the first edition of this book did not emphasize the different parameter options in functions from the scikit-learn library. This was originally a bit misleading as it gave off the impression that the models were doing exactly the same thing when they have different default behaviors. This chapter now gives more code and examples to emphasize the model differences between the modeling libraries. The original ACS modeling code can still be found in Appendix Y.

14.1 Logistic Regression (Binary Outcome Variable)

When you have a binary response variable (i.e., two possible outcomes), logistic regression is often used to model the data. We will be using the titanic data set that was exported from the seaborn library.


About the Titanic data set

The titanic data set is coming from the seaborn library. It was exported directly from the library to be read in so the exact data set can be reused in this chapter along along with the example used in Appendix Z.2.




Below is the code used to create the data set.

import seaborn as sns

titanic = sns.load_data set("titanic")
titanic.to_csv("data/titanic.csv", index=False)



With our data loaded, let’s first subset the dataframe using only the columns we will be using for this model. We will also be dropping rows with missing values in them since models usually ignore observations that are not complete anyway, and we are not showing how to impute missing data in this chapter. Notice that we are dropping the missing values after we subsetted the columns we wanted, so we are not artificially dropping observations.

titanic_sub = (
    titanic[["survived", "sex", "age", "embarked"]].copy().dropna()
)

print(titanic_sub)

         survived    sex      age embarked
0               0   male     22.0        S
1               1 female     38.0        C
2               1 female     26.0        S
3               1 female     35.0        S
4               0   male     35.0        S
..            ...    ...      ...      ...
885             0 female     39.0        Q
886             0   male     27.0        S
887             1 female     19.0        S
889             1   male     26.0        C
890             0   male     32.0        Q

[712 rows x 4 columns]

In this data set, our outcome of interest is the survived column, on whether an individual survived (1) or died (0) during the sinking of the Titanic. The other columns, sex, age, and embarked are going to be the variable we use to see who survived.

# count of values in the survived column
print(titanic_sub["survived"].value_counts())

0    424
1    288
Name: survived, dtype: int64

The embarked column describes where the individual boarded the ship from. There are three values for embarked: Southampton (S), Cherbourg (C), and Queenstown (Q).

# count of values in the embarked column
print(titanic_sub["embarked"].value_counts())

S    554
C    130
Q     28
Name: embarked, dtype: int64

Interpreting results from a logistic regression model is not as straightforward as interpreting a linear regression model. In a logistic regression, as with all generalized linear models, there is a transformation (i.e., link function), that that affects how to interpret the results.

The link function for logistic regression is usually the logit link function.

[image: Images]

Where p is the probability of the event, and [image: Images] is the odds of the event. This is why logistic regression output is typically interpreted as “odds”, and we do that by undoing the log call by exponentiating our results. You can think of the “odds” of something as how many “times likely” the outcome will be. That phrasing should only be used as an analogy, however, as it is not technically correct. The value of an odds can only be greater than zero, and can never be negative. However, the “log odds” (i.e., logit), can be negative.

14.1.1 With Statsmodels

To perform a logistic regression in statsmodels we can use the logit() function. The syntax for this function is the same as that used for linear regression in Chapter 13.

import statsmodels.formula.api as smf

# formula for the model
form = 'survived ~ sex + age + embarked'

# fiting the logistic regression model, note the .fit() at the end
py_logistic_smf = smf.logit(formula=form, data=titanic_sub).fit()

print(py_logistic_smf.summary())

Optimization terminated successfully.
         Current function value: 0.509889
         Iterations 6
                       Logit Regression Results
==============================================================================
Dep. Variable:              survived   No. Observations:                   712
Model:                         Logit   Df Residuals:                       707
Method:                          MLE   Df Model:                             4
Date:               Thu, 01 Sep 2022   Pseudo R-squ.:                   0.2444
Time:                       01:55:49   Log-Likelihood:                 -363.04

converged:                          True LL-Null:                     -480.45
Covariance Type:                 nonrobust LLR p-value:             1.209e-49
==============================================================================
                    coef     std err        z    P>|z|    [0.025        0.975]
---------------------------------------------------------------------------------
Intercept         2.2046       0.322    6.851    0.000     1.574         2.835
sex[T.male]      -2.4760       0.191  -12.976    0.000    -2.850        -2.102
embarked[T.Q]    -1.8156       0.535   -3.393    0.001    -2.864        -0.767
embarked[T.S]    -1.0069       0.237   -4.251    0.000    -1.471        -0.543
age              -0.0081       0.007   -1.233    0.217    -0.021         0.005
=================================================================================

We can then get the coefficients of the model, and exponentiate it to calculate the odds of each variable.

import numpy as np

# get the coefficients into a dataframe
res_sm = pd.DataFrame(py_logistic_smf.params, columns=["coefs_sm"])

# calculate the odds
res_sm["odds_sm"] = np.exp(res_sm["coefs_sm"])

# round the decimals
print(res_sm.round(3))

              coefs_sm  odds_sm
Intercept        2.205    9.066
sex[T.male]     -2.476    0.084
embarked[T.Q]   -1.816    0.163
embarked[T.S]   -1.007    0.365
age             -0.008    0.992

An example interpretation of these numbers would be that for every one unit increase in age, the odds of the survived decreases by 0.992 times. Since the value is close to 1, it seems that age wasn’t too much of a factor in survival. You can also confirm that statement by looking at the p-value for the variable in the summary table (under the P>|z| column).

A similar interpretation can be made with categorical variables. Recall that categorical variables are always interpreted in relation to the reference variable.

There are two potential values for sex in this data set, male and female, but only a coefficient for male is given. So that means the value is interpreted as “males compared to females”, where female is the reference variable. The odds for the male variable are interpreted as: males were 0.084 times more likely to survive compared to females (the odds for not surviving the tragedy were high for males).

14.1.2 With Sklearn

When using sklearn, remember that dummy variables need to be created manually.

titanic_dummy = pd.get_dummies(
    titanic_sub[["survived", "sex", "age", "embarked"]],
    drop_first=True
)

# note our outcome variable is the first column (index 0)
print(titanic_dummy)

     survived   age sex_male embarked_Q embarked_S
0           0  22.0        1          0          1
1           1  38.0        0          0          0
2           1  26.0        0          0          1
3           1  35.0        0          0          1
4           0  35.0        1          0          1
..        ...   ...      ...        ...        ...
885         0  39.0        0          1          0
886         0  27.0        1          0          1
887         1  19.0        0          0          1
889         1  26.0        1          0          0
890         0  32.0        1          1          0

[712 rows x 5 columns]

We can then use the LogisticRegression() function from the linear_model module to create a logistic regression output to fit our model.

from sklearn import linear_model

# this is the only part that fits the model
py_logistic_sklearn1 = (
  linear_model.LogisticRegression().fit(
    X=titanic_dummy.iloc[:, 1:], # all the columns except first
    y=titanic_dummy.iloc[:, 0]   # just the first column 
  )
)


Danger

Please read Section 14.1.3, which emphasizes reading the documentation and being aware of the ramifications of the default scikit-learn LogisticRegression() values.



The code below will process the scikit-learn logistic regression fitted model into a single dataframe so we can better compare results.

# get the names of the dummy variable columns
dummy_names = titanic_dummy.columns.to_list()
# get the intercept and coefficients into a dataframe
sk1_res1 = pd.DataFrame(
    py_logistic_sklearn1.intercept_,

    index=["Intercept"],
    columns=["coef_sk1"],

)
sk1_res2 = pd.DataFrame(
    py_logistic_sklearn1.coef_.T,
    index=dummy_names[1:],
    columns=["coef_sk1"],

)

# put the results into a single dataframe to show the results
res_sklearn_pd_1 = pd.concat([sk1_res1, sk1_res2])

# calculate the odds
res_sklearn_pd_1["odds_sk1"] = np.exp(res_sklearn_pd_1["coef_sk1"])

print(res_sklearn_pd_1.round(3))

           coef_sk1   odds_sk1
Intercept     2.024      7.571
age          -0.008      0.992
sex_male     -2.372      0.093
embarked_Q   -1.369      0.254
embarked_S   -0.887      0.412

You will notice here that the coefficient values are different from the ones calculated from the statsmodels section we just did. The differences are more than a simple rounding error too!

14.1.3 Be Careful of Scikit-learn Defaults

The main reason why the sklearn results differ from the statsmodels results stems from the domain differences where the two packages come from. Scikit-learn comes more from the machine learning world and is focused on prediction so the model defaults are set for numeric stability, and not for inference. However, statsmodels functions are implemented in a manner more traditional for statistics.

The LogisticRegression() function has a penalty parameter that defaults to 'l2', which adds an L2 penalty term (more about penalty terms in Chapter 17). If we want LogisticRegression() to behave in a manner more traditional for statistics, we need to set penalty="none".

# fit another logistic regression with no penalty
py_logistic_sklearn2 = linear_model.LogisticRegression(
     penalty="none" # this parameter is important! 
).fit(
     X=titanic_dummy.iloc[:, 1:],   # all the columns except first
     y=titanic_dummy.iloc[:, 0]    # just the first column
)

# rest of the code is the same as before, except variable names
sk2_res1 = pd.DataFrame(
    py_logistic_sklearn2.intercept_,
    index=["Intercept"],
    columns=["coef_sk2"],
)
sk2_res2 = pd.DataFrame(
    py_logistic_sklearn2.coef_.T,
    index=dummy_names[1:],
    columns=["coef_sk2"],
)

res_sklearn_pd_2 = pd.concat([sk2_res1, sk2_res2])
res_sklearn_pd_2["odds_sk2"] = np.exp(res_sklearn_pd_2["coef_sk2"])


Note

In general, always check the documentation for the functions you are using, and make sure you know what all the parameters are doing.



First, let’s look at the original statsmodels results

sm_results = res_sm.round (3)

# sort values to make things easier to compare
sm_results = sm_results.sort_index()

print(sm_results)

              coefs_sm  odds_sm
Intercept        2.205    9.066
age             -0.008    0.992
embarked[T.Q]   -1.816    0.163
embarked[T.S]   -1.007    0.365
sex[T.male]     -2.476    0.084

Now, let’s compare them with the two sklearn results

# concatenate the 2 model results
sk_results = pd.concat(
   [res_sklearn_pd_1.round(3), res_sklearn_pd_2.round(3)],
   axis ="columns",
)

# sort cols and rows to make things easy to compare
sk_results = sk_results[sk_results.columns.sort_values()]
sk_results = sk_results.sort_index()

print(sk_results)

             coef_sk1  coef_sk2  odds_sk1  odds_sk2
Intercept       2.024     2.205     7.571     9.066
age            -0.008    -0.008     0.992     0.992
embarked_Q     -1.369    -1.816     0.254     0.163
embarked_S     -0.887    -1.007     0.412     0.365
sex_male       -2.372    -2.476     0.093     0.084

The results here can also be compared to the same data and model from the R programming language in Appendix Z.2. You can see how subtle differences between the model parameters can cause differences in the interpretations.

14.2 Poisson Regression (Count Outcome Variable)

Poisson regression is performed when our response variable involves count data.

acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 'NumBedrooms',
       'NumChildren', 'NumPeople', 'NumRooms', 'NumUnits',
       'NumVehicles', 'NumWorkers', 'OwnRent', 'YearBuilt',
       'HouseCosts', 'ElectricBill', 'FoodStamp', 'HeatingFuel',
       'Insurance', 'Language'],
      dtype='object')

For example, in the acs data, the NumChildren variable is an example of count data.


About the ACS data set

The American Community Survey (ACS) data we are using contains information about family and house size in New York.



14.2.1 With Statsmodels

We can perform a Poisson regression using the poisson() function in statsmodels. We will use the NumBedrooms variable (Figure 14.1).

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
sns.countplot(data = acs, x = "NumBedrooms", ax=ax)

ax.set_title('Number of Bedrooms')
ax.set_xlabel('Number of Bedrooms in a House')
ax.set_ylabel('Count')

plt.show()


[image: Images]

Figure 14.1 Bar plot using the statsodels countplot() function of the NumBedrooms variable



model = smf.poisson(
  "NumBedrooms ~ HouseCosts + OwnRent", data=acs
)
results = model.fit()

print(results.summary())

Optimization terminated successfully.
         Current function value: 1.680998
         Iterations 10

                     Poisson Regression Results
==============================================================================
Dep. Variable:            NumBedrooms   No. Observations:                22745
Model:                        Poisson   Df Residuals:                    22741
Method:                           MLE   Df Model:                            3
Date:                Thu, 01 Sep 2022   Pseudo R-squ.:                0.008309
Time:                        01:55:49   Log-Likelihood:                -38234.
converged:                       True   LL-Null:                       -38555.
Covariance Type:            nonrobust   LLR p-value:                1.512e-138
=======================================================================================
                         coef      std err       z       P>|z|    [0.025        0.975]
---------------------------------------------------------------------------------------
Intercept              1.1387        0.006  184.928      0.000     1.127         1.151
OwnRent[T.Outright]   -0.2659        0.051   -5.182      0.000    -0.367        -0.165
OwnRent[T.Rented]     -0.1237        0.012   -9.996      0.000    -0.148        -0.099
HouseCosts          6.217e-05     2.96e-06   21.017      0.000  5.64e-05       6.8e-05
=======================================================================================

The benefit of using a generalized linear model is that the only things that need to be changed are the family of the model that needs to be fit, and the link function that transforms our data. We can also use the more general glm() function to perform all the same calculations.

import statsmodels.api as sm
import statsmodels.formula.api as smf

model = smf.glm(
   "NumBedrooms ~ HouseCosts + OwnRent",
   data=acs,
   family=sm.families.Poisson(sm.genmod.families.links.log()),
).fit()

In this example, we are using the Poisson family, which comes from sm.families. Poisson, and we’re passing in the log link function via sm.genmod.families.links.log(). We get the same values as we did earlier when we use this method.

print(results.summary())

                    Poisson Regression Results
==============================================================================
Dep. Variable:              NumBedrooms  No. Observations:               22745
Model:                       Poisson Df  Residuals:                      22741
Method:                          MLE Df  Model:                              3
Date:                  Thu, 01 Sep 2022  Pseudo R-squ.:               0.008309
Time:                          01:55:49  Log-Likelihood:               -38234.
converged:                         True  LL-Null:                      -38555.
Covariance Type:              nonrobust  LLR p-value:               1.512e-138
=======================================================================================
                          coef    std err         z   P>|z|     [0.025         0.975]
---------------------------------------------------------------------------------------
Intercept               1.1387      0.006   184.928   0.000      1.127          1.151
OwnRent[T.Outright]    -0.2659      0.051    -5.182   0.000     -0.367         -0.165
OwnRent[T.Rented]      -0.1237      0.012    -9.996   0.000     -0.148         -0.099
HouseCosts           6.217e-05   2.96e-06    21.017   0.000   5.64e-05        6.8e-05
=======================================================================================

14.2.2 Negative Binomial Regression for Overdispersion

If our assumptions for Poisson regression are violated—that is, if our data has overdispersion—we can perform a negative binomial regression instead (Figure 14.2). Overdispersion is the statistics term meaning the numbers have more variance than expected, i.e., the values are too spread out.

fig, ax = plt.subplots()

sns.countplot(data = acs, x = "NumPeople", ax=ax)

ax.set_title('Number of People')
ax.set_xlabel('Number of People in a Household')
ax.set_ylabel('Count')

plt.show()


[image: Images]

Figure 14.2 Bar plot using the statsodels countplot() function of the NumPeople variable



model = smf.glm(
 "NumPeople ~ Acres + NumVehicles",
 data=acs,
 family=sm.families.NegativeBinomial(
   sm.genmod.families.links.log()
 ),
)

results = model.fit()

print(results.summary())

              Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:           NumPeople   No.Observations:                    22745
Model:                      GLM Df   Residuals:                          22741
Model Family:  NegativeBinomial Df   Model:                                  3
Link Function:                 log   Scale:                             1.0000
Method:                       IRLS   Log-Likelihood:                   -53542.
Date:             Thu, 01 Sep 2022   Deviance:                          2605.6
Time:                     01:55:50   Pearson chi2:                    2.99e+03
No. Iterations:                  6   Pseudo R-squ. (CS):              0.003504
Covariance Type:         nonrobust
==================================================================================
                    coef   std err         z      P>|z|      [0.025       0.975]
----------------------------------------------------------------------------------
Intercept         1.0418     0.025    41.580      0.000       0.993        1.091
Acres[T.10+]     -0.0225     0.040    -0.564      0.573      -0.101        0.056
Acres[T.Sub 1]    0.0509     0.019     2.671      0.008       0.014        0.088
NumVehicles       0.0661     0.008     8.423      0.000       0.051        0.081
==================================================================================

Look for the reference variable in Acres.

print(acs["Acres"].value_counts())

Sub 1   17114
1-10     4627
10+      1004
Name: Acres, dtype: int64

14.3 More Generalized Linear Models

The documentation page for GLM found in statsmodels lists the various families that can be passed into the glm parameter.1 These families can all be found under sm.families.<FAMILY>:

[image: Images] Binomial

[image: Images] Gamma

[image: Images] Gaussian

[image: Images] InverseGaussian

[image: Images] NegativeBinomial

[image: Images] Poisson

[image: Images] Tweedie

The link functions are found under sm.families.family.<FAMILY>.links. Following is the list of link functions, but note that not all link functions are available for each family:

[image: Images] CDFLink

[image: Images] CLogLog

[image: Images] LogLog
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[image: Images] Logit

[image: Images] NegativeBinomial

[image: Images] Power

[image: Images] cauchy

[image: Images] cloglog

[image: Images] loglog

[image: Images] identity

[image: Images] inverse_power

[image: Images] inverse_squared

[image: Images] log

[image: Images] logit

For example, using the all the link functions for the Binomial family.

sm.families.family.Binomial.links

1. https://www.statsmodels.org/dev/glm.xhtml

[statsmodels.genmod.families.links.Logit,
 statsmodels.genmod.families.links.probit,
 statsmodels.genmod.families.links.cauchy,
 statsmodels.genmod.families.links.Log,
 statsmodels.genmod.families.links.CLogLog,
 statsmodels.genmod.families.links.LogLog,
 statsmodels.genmod.families.links.identity]

Conclusion

This chapter covered some of the most basic and common models used in data analysis. These types of models serve as an interpretable baseline for more complex machine learning models. As we cover more complex models, keep in mind that sometimes simple and tried-and-true interpretable models can outperform the fancy newer models.
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Survival Analysis

Survival analysis is used when we want to model how much time passes before something happens. It is typically used in health contexts when we are looking to see if a drug or intervention prevents an adverse event from occurring. Before we begin with examples of survival analysis, let’s define some terms first.

[image: Images] Event: Outcome, situation, or “event” you are interested in tracking in your study.

[image: Images] Follow-up: “Lost to follow-up”, is a term used in medical data. It means that the patient stopped “following up” to the visits. This can mean that the patient just stopped showing up, or the patient has died Usually, in this context, death is the “event” of interest.

[image: Images] Censoring: Unsure of the status for a particular observation. This can be right-censored (no more data after this period of time), or left-censored (no data before this period of time). Right-censoring typically occurs from lost to follow up, or the event of interest has occurred (e.g., death).

[image: Images] Stop time: A point in the data where some censoring event has occurred.

Survival analysis is typically used in medical research when trying to determine whether one treatment prevents a serious adverse event (e.g., death) better than the standard or a different treatment. Survival analysis is also used when data is censored, meaning the exact outcome of an event is not entirely known. For example, patients who follow a treatment regimen may sometimes be lost break to follow-up. The censoring usually occurs at a “stop” event.

Survival analysis is performed using the lifelines library.1

15.1 Survival Data

bladder = pd.read_csv('data/bladder.csv')

print(bladder)

1. lifelines documentation: https://lifelines.readthedocs.io/en/latest/

    id rx number size stop event enum
0    1  1      1    3    1     0    1
1    1  1      1    3    1     0    2
2    1  1      1    3    1     0    3
3    1  1      1    3    1     0    4
4    2  1      2    1    4     0    1
..  .. ..    ...  ...  ...   ...  ...
335 84  2      2    1   54     0    4
336 85  2      1    3   59     0    1
337 85  2      1    3   59     0    2
338 85  2      1    3   59     0    3
339 85  2      1    3   59     0    4

[340 rows x 7 columns]


About the bladder data set

The bladder data set comes from the R {survival} package. It contains 85 patients, their cancer recurrence status, and what treatment they were on. Below is a recreation of the code book for the data.

[image: Images] id: Patient ID

[image: Images] rx: Treatment (1 = placebo, 2 = thiotepa)

[image: Images] number: Initial number of tumors (8 = 8 or more)

[image: Images] size: Size (cm) of largest initial tumor

[image: Images] stop: Recurrence or censoring time

[image: Images] event: Bladder cancer re-occurrence (0: No, 1: Yes)

[image: Images] enum: Which recurrence (up to 4)



Here are the counts of the different treatments, rx.

print(bladder['rx'].value_counts())

1    188
2    152
Name: rx, dtype: int64

15.2 Kaplan Meier Curves

To perform our survival analysis, we import the KaplanMeierFitter() function from the lifelines library.

from lifelines import KaplanMeierFitter

Creating the model and fitting the data proceeds similarly to how models are fit using sklearn. The stop variable indicates when an event occurs, and the event variable signals whether the event of interest (bladder cancer re-occurrence) occurred. The event value can have a value of 0, because people can be lost to follow-up. As noted earlier, this type of data is called “censored”.


[image: Images]

Figure 15.1 Survival function of cancer recurrence using the KaplanMeierFitter



kmf = KaplanMeierFitter()
kmf.fit(bladder['stop'], event_observe d=bladder['event'])

<lifelines.KaplanMeierFitter:"KM_estimate", fitted with 340 total
observations, 228 right-censored observations>

We can plot the survival curve using matplotlib, as shown in Figure 15.1.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
kmf.survival_function_.plot(ax=ax)
ax.set_title('Survival function of cancera recurrence')
plt.show()

We can also show the confidence interval of our survival curve, as shown in Figure 15.2.

fig, ax = plt.subplots()
kmf.plot(ax=ax)
ax.set_title('Survival with confidence intervals')
plt.show()


[image: Images]

Figure 15.2 Survival function of cancer recurrence with confidence intervals



15.3 Cox Proportional Hazard Model

So far, we’ve just plotted the survival curve. We can also fit a model to predict survival rate. One such model is called the Cox proportional hazards model. We fit this model using the CoxPHFitter() class from lifelines.

from lifelines import CoxPHFitter

cph = CoxPHFitter()

We then pass in the columns to be used as predictors.

cph_bladder_df = bladder[
    ["rx", "number", "size", "enum", "stop", "event"]
]
cph.fit(cph_bladder_df, duration_col="stop", event_col="event")

<lifelines.CoxPHFitter: fitted with 340 total observations, 228
right-censored observations>

Now we can use the .print_summary() method to print out the coefficients.

cph.print_summary()

[image: Images]

We mainly focus on the hazard ratio when looking at CPH models. In the table this is represented by the exp(coef) column in the results. Values close to 1 show that there is no change in the survival hazard. Values from 0 -- 1 show a smaller hazard and values greater than 1 show an increase in hazard.


Note

In cancer studies, there is a difference in how the hazard ratios are interpreted.

[image: Images] Hazard ratio > 1 is a bad prognostic factor

[image: Images] Hazard ratio < 1 is a good prognostic factor

That is, hazard ratios < 1 tell us what may be causing cancer.



15.3.1 Testing the Cox Model Assumptions

One way to check the Cox model’s assumptions is to plot a separate survival curve by strata. In our example, our strata will be the values of the rx column, meaning we will plot a separate curve for each type of treatment. If the log(-log(survival curve)) versus log(time) curves cross each other (Figure 15.3), it signals that the model needs to be stratified by the variable.

rx1 = bladder.loc[bladder['rx'] == 1]
rx2 = bladder.loc[bladder['rx'] == 2]

kmf1 = KaplanMeierFitter()
kmf1.fit(rx1['stop'], event_observed=rx1['event'])

kmf2 = KaplanMeierFitter()
kmf2.fit(rx2['stop'], event_observed=rx2['event'])

fig, axes = plt.subplots()

# put both plots on the same axes
kmf1.plot_loglogs(ax=axes)
kmf2.plot_loglogs(ax=axes)


[image: Images]

Figure 15.3 Plotting separate survival curves to check the Cox model assumptions



axes.legend(['rx1', 'rx2'])

plt.show()

Since the lines cross each other, it makes sense to stratify our analysis.

cph_strat = CoxPHFitter()
cph_strat.fit(
    cph_bladder_df,
    duration_col="stop",
    event_col="event",
    strata=["rx"],
)

cph_strat.print_summary()

[image: Images]

Conclusion

Survival models measure “time to event” with censoring. They are commonly used in a health context but do not have to be solely used in that domain. If you can define some kind of event of interest, e.g., people who come to my website and purchase an item, you can potentially use survival models.
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Model Diagnostics

Building models is a continuous art. As we start adding and removing variables from our models, we need a means to compare models with one another and a consistent way of measuring model performance. There are many ways we can compare models, and this chapter describes some of these methods.

16.1 Residuals

The residuals of a model compare what the model calculates and the actual values in the data. Let’s fit some models on a housing data set.

import pandas as pd
housing = pd.read_csv('data/housing_renamed.csv')

print(housing.head())

  neighborhood           type  units  year_built   sq_ft    income  \
0    FINANCIAL R9-CONDOMINIUM     42      1920.0   36500   1332615
1    FINANCIAL R4-CONDOMINIUM     78      1985.0  126420   6633257
2    FINANCIAL RR-CONDOMINIUM    500         NaN  554174  17310000
3    FINANCIAL R4-CONDOMINIUM    282      1930.0  249076  11776313
4      TRIBECA R4-CONDOMINIUM    239      1985.0  219495  10004582

    income_per_sq_ft  expense  expense_per_sq_ft  net_income  \
0              36.51   342005               9.37      990610
1              52.47  1762295              13.94     4870962
2              31.24  3543000               6.39    13767000
3              47.28  2784670              11.18     8991643
4              45.58  2783197              12.68     7221385

      value  value_per_sq_ft       boro
0   7300000           200.00  Manhattan
1  30690000           242.76  Manhattan
2  90970000           164.15  Manhattan
3  67556006           271.23  Manhattan
4  54320996           247.48  Manhattan

We’ll begin with a multiple linear regression model with three covariates.

import statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf

house1 = smf.glm(
    "value_per_sq_ft ~ units + sq_ft + boro", data=housing
).fit()

print(house1.summary())

            Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:       value_per_sq_ft   No. Observations:                  2626
Model:                        GLM Df   Residuals:                         2619
Model Family:            Gaussian Df   Model:                                6
Link Function:              identity   Scale:                           1879.5
Method:                         IRLS   Log-Likelihood:                 -13621.
Date:               Thu, 01 Sep 2022   Deviance:                    4.9224e+06
Time:                       01:55:55   Pearson chi2:                  4.92e+06
No. Iterations:                    3   Pseudo R-squ. (CS):              0.7772
Covariance Type:           nonrobust
=========================================================================================
                            coef   std err         z      P>|z|      [0.025       0.975]
-----------------------------------------------------------------------------------------
Intercept                43.2909     5.330      8.122     0.000      32.845       53.737
boro[T.Brooklyn]         34.5621     5.535      6.244     0.000      23.714       45.411
boro[T.Manhattan]       130.9924     5.385     24.327     0.000     120.439      141.546
boro[T.Queens]           32.9937     5.663      5.827     0.000      21.895       44.092
boro[T.Staten Island]    -3.6303     9.993     -0.363     0.716     -23.216       15.956
units                    -0.1881     0.022     -8.511     0.000      -0.231       -0.145
sq_ft                     0.0002  2.09e-05     10.079     0.000       0.000        0.000
=========================================================================================

We can plot the residuals of our model (Figure 16.1). What we are looking for is a plot with a random scattering of points. If a pattern is apparent, then we will need to investigate our data and model to see why this pattern emerged.

import seaborn as sns
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
sns.scatterplot(
  x=house1.fittedvalues, y=house1.resid_deviance, ax=ax
)

plt.show()

This residual plot is concerning because it contains obvious clusters and groups (residual plots are supposed to look random). We can color our plot by the boro variable, which indicates the borough of New York where the data apply (Figure 16.2).


[image: Images]

Figure 16.1 Residuals of the house1 model




[image: Images]

Figure 16.2 Residuals of the house1 model colored by boro



# get the data used for the residual plot and boro color
res_df = pd.DataFrame(
  {
    "fittedvalues": house1.fittedvalues, # get a model attribute
    "resid_deviance": house1.resid_deviance,
    "boro": housing["boro"], # get a value from data column
  }
)

# greyscale friendly color pallette
color_dict = dict(
  {
    "Manhattan": "#d7191c",
    "Brooklyn": "#fdae61",
    "Queens": "#ffffbf",
    "Bronx": "#abdda4",
    "Staten Island": "#2b83ba",
  }
)

fig, ax = plt.subplots()
fig = sns.scatterplot(
   x="fittedvalues",
   y="resid_deviance",
   data=res_df,
   hue="boro",
   ax=ax,
   palette=color_dict,
   edgecolor='black',
)

plt.show()

When we color our points based on boro, you can see that the clusters are highly governed by the value of this variable.

16.1.1 Q-Q Plots

A q-q plot is a graphical technique that determines whether your data conforms to a reference distribution. Since many models assume the data is normally distributed, a q-q plot is one way to make sure your data really is normal (Figure 16.3).

from scipy import stats

# make a copy of the variable so we don't need to keep typing it
resid = house1.resid_deviance.copy()

fig = statsmodels.graphics.gofplots.qqplot(resid, line='r')
plt.show()

We can also plot a histogram of the residuals to see if our data is normal (Figure 16.4).

resid_std = stats.zscore(resid)

fig, ax = plt.subplots()
sns.histplot(resid_std, ax=ax)
plt.show()


[image: Images]

Figure 16.3 The q-q plot of the house1 model




[image: Images]

Figure 16.4 Histogram of the the house1 model residuals



If the points on the q-q plot lie on the red line, that means our data match our reference distribution. If the points do not lie on this line, then one thing we can do is apply a transformation to our data. Table 16.1 shows which transformations can be performed on our data. If the q-q plot of points is convex compared to the red reference line, then you can transform your data toward the top of the table. If the q-q plot of points is concave compared to the red reference line, then you can transform your data toward the bottom of the table.


Table 16.1 Transformations

[image: Images]



16.2 Comparing Multiple Models

Now that we know how to assess a single model, we need a means to compare multiple models so that we can pick the “best” one.

16.2.1 Working With Linear Models

We begin by fitting five models. Note that some of the models use the + operator to add covariates to the model, whereas others use the * operator. To specify an interaction in our model, we use the * operator. That is, the variables that are interacting are behaving in a way that is not independent of one another, but in such a way that their values affect one another and are not simply additive.


Note

If the original housing data set had a column named "class", this would cause an error because "class" is a Python keyword. Therefore, the column was renamed "type".



f1 = 'value_per_sq_ft ~ units + sq_ft + boro' 
f2 = 'value_per_sq_ft ~ units *  sq_ft + boro' 
f3 = 'value_per_sq_ft ~ units + sq_ft * boro + type' 
f4 = 'value_per_sq_ft ~ units + sq_ft * boro + sq_ft * type' 
f5 = 'value_per_sq_ft ~ boro + type'

house1 = smf.ols(f1, data=housing).fit()
house2 = smf.ols(f2, data=housing).fit()
house3 = smf.ols(f3, data=housing).fit()
house4 = smf.ols(f4, data=housing).fit()
house5 = smf.ols(f5, data=housing).fit()

With all our models, we can collect all of our coefficients and the model with which they are associated.

mod_results = (
  pd.concat(
    [
      house1.params,
      house2.params,
      house3.params,
      house4.params,
      house5.params,
    ],
    axis=1,
  )
  .rename(columns=lambda x: "house" + str(x + 1))
  .reset_index()
  .rename(columns={"index": "param"})
  .melt(id_vars="param", var_name="model", value_name="estimate")
)

print(mod_results)

                           param   model     estimate
0                      Intercept  house1    43.290863
1               boro[T.Brooklyn]  house1    34.562150
2              boro[T.Manhattan]  house1   130.992363
3                 boro[T.Queens]  house1    32.993674
4          boro[T.Staten Island]  house1    -3.630251
..                           ...     ...          ...
85          sq_ft:boro[T.Queens]  house5          NaN
86   sq_ft:boro[T.Staten Island]  house5          NaN
87  sq_ft:type[T.R4-CONDOMINIUM]  house5          NaN
88  sq_ft:type[T.R9-CONDOMINIUM]  house5          NaN
89  sq_ft:type[T.RR-CONDOMINIUM]  house5          NaN

[90 rows x 3 columns]

Since it’s not very useful to look at a large column of values, we can plot our coefficients to quickly see how the models are estimating parameters in relation to each other (Figure 16.5).

color_dict = dict(
  {
    "house1": "#d7191c",
    "house2": "#fdae61",
    "house3": "#ffffbf",
    "house4": "#abdda4",
    "house5": "#2b83ba",
  }
)


[image: Images]

Figure 16.5 Coefficients of the house1 to house5 models



fig, ax = plt.subplots()
ax = sns.pointplot(
  x="estimate",
  y="param",
  hue="model",
  data=mod_results,
  dodge=True, # jitter the points
  join=False, # don't connect the points
  palette=color_dict
)

plt.tight_layout()
plt.show()

Now that we have our linear models, we can use the analysis of variance (ANOVA) method to compare them. The ANOVA will give us the residual sum of squares (RSS), which is one way we can measure performance (lower is better).

model_names = ["house1", "house2", "house3", "house4", "house5"]
house_anova = statsmodels.stats.anova.anova_lm(
  house1, house2, house3, house4, house5
)

house_anova.index = model_names

print(house_anova)

         df_resid           ssr  df_diff         ss_diff           F  \
house1     2619.0  4.922389e+06      0.0             NaN          NaN
house2     2618.0  4.884872e+06      1.0    37517.437605    20.039049
house3     2612.0  4.619926e+06      6.0   264945.539994    23.585728
house4     2609.0  4.576671e+06      3.0    43255.441192     7.701289
house5     2618.0  4.901463e+06     -9.0  -324791.847907    19.275539

               Pr(>F)
house1            NaN
house2   7.912333e-06
house3   2.754431e-27
house4   4.025581e-05
house5            NaN

Another way we can calculate model performance is by using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). These methods apply a penalty for each feature that is added to the model (lower AIC and BIC value is better). Thus, we should strive to balance performance and parsimony.

house_models = [house1, house2, house3, house4, house5]

abic = pd.DataFrame(
  {
    "model": model_names,
    "aic": [mod.aic for mod in house_models],
    "bic": [mod.bic for mod in house_models],
  }
)

print(abic.sort_values(by=["aic", "bic"]))

    model           aic           bic
3  house4  27084.800043  27184.644733
2  house3  27103.502577  27185.727615
1  house2  27237.939618  27284.925354
4  house5  27246.843392  27293.829128
0  house1  27256.031113  27297.143632

16.2.2 Working With GLM Models

We can perform the same calculations and model diagnostics on generalized linear models (GLMs). We can use the deviance of the model to do model comparisons:

def deviance_table( *models):
  """Create a table of model diagnostics from model objects"""
  return pd.DataFrame(
    {
      "df_residuals": [mod.df_resid for mod in models],
      "resid_stddev": [mod.deviance for mod in models],
      "df": [mod.df_model for mod in models],
      "deviance": [mod.deviance for mod in models],
    }
  )

f1 = 'value_per_sq_ft ~ units + sq_ft + boro' 
f2 = 'value_per_sq_ft ~ units * sq_ft + boro' 
f3 = 'value_per_sq_ft ~ units + sq_ft * boro + type'
f4 = 'value_per_sq_ft ~ units + sq_ft * boro + sq_ft * type'
f5 = 'value_per_sq_ft ~ boro + type'

glm1 = smf.glm(f1, data=housing).fit()
glm2 = smf.glm(f2, data=housing).fit()
glm3 = smf.glm(f3, data=housing).fit()
glm4 = smf.glm(f4, data=housing).fit()
glm5 = smf.glm(f5, data=housing).fit()

glm_anova = deviance_table(glm1, glm2, glm3, glm4, glm5)
print(glm_anova)

   df_residuals  resid_stddev    df       deviance
0          2619  4.922389e+06     6   4.922389e+06
1          2618  4.884872e+06     7   4.884872e+06
2          2612  4.619926e+06    13   4.619926e+06
3          2609  4.576671e+06    16   4.576671e+06
4          2618  4.901463e+06     7   4.901463e+06

We can do the same set of calculations in a logistic regression.

# create a binary variable
housing["high"] = (housing["value_per_sq_ft"] >= 150).astype(int)

print(housing["high"].value_counts())

0     1619
1     1007
Name: high, dtype: int64

# create and fit our logistic regression using GLM

f1 = "high ~ units + sq_ft + boro" 
f2 = "high ~ units * sq_ft + boro"
f3 = "high ~ units + sq_ft * boro + type" 
f4 = "high ~ units + sq_ft * boro + sq_ft * type"
f5 = "high ~ boro + type"

logistic = statsmodels.genmod.families.family.Binomial(
    link=statsmodels.genmod.families.links.Logit()
)

glm1 = smf.glm(f1, data=housing, family=logistic).fit()
glm2 = smf.glm(f2, data=housing, family=logistic).fit()
glm3 = smf.glm(f3, data=housing, family=logistic).fit()
glm4 = smf.glm(f4, data=housing, family=logistic).fit()
glm5 = smf.glm(f5, data=housing, family=logistic).fit()

# show the deviances from our GLM models
print(deviance_table(glm1, glm2, glm3, glm4, glm5))

   df_residuals  resid_stddev  df     deviance
0          2619   1695.631547   6  1695.631547
1          2618   1686.126740   7  1686.126740
2          2612   1636.492830  13  1636.492830
3          2609   1619.431515  16  1619.431515
4          2618   1666.615696   7  1666.615696

Finally, we can create a table of AIC and BIC values.

mods = [glm1, glm2, glm3, glm4, glm5]

abic_glm = pd.DataFrame(
  {
    "model": model_names,
    "aic": [mod.aic for mod in house_models],
    "bic": [mod.bic for mod in house_models],
  }
)

print(abic_glm.sort_values(by=["aic", "bic"]))

    model          aic            bic
3  house4  27084.800043  27184.644733
2  house3  27103.502577  27185.727615
1  house2  27237.939618  27284.925354
4  house5  27246.843392  27293.829128
0  house1  27256.031113  27297.143632

Looking at all these measures, we can say Model 4 is performing the best so far.

16.3 k-Fold Cross-Validation

Cross-validation is another technique to compare models. One of the main benefits is that it can account for how well your model performs on new data. It does this by partitioning your data into k parts. It holds one of the parts aside as the “test” set and then fits the model on the remaining k − 1 parts, the “training” set. The fitted model is then used on the “test” and an error rate is calculated. This process is repeated until all k parts have been used as a “test” set. The final error of the model is some average across all the models.

Cross-validation can be performed in many different ways. The method just described is called “k-fold cross-validation.” Alternative ways of performing cross-validation include “leave-one-out cross-validation”, in which the training data consists of all the data except one observation designated as the test set.

Here we will split our data into k − 1 testing and training data sets.

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

print(housing.columns)

Index(['neighborhood', 'type', 'units', 'year_built', 'sq_ft',
       'income', 'income_per_sq_ft', 'expense', 'expense_per_sq_ft',
       'net_income', 'value', 'value_per_sq_ft', 'boro', 'high'],
      dtype='object')

# get training and test data
X_train, X_test, y_train, y_test = train_test_split(
    pd.get_dummies(
        housing[["units", "sq_ft", "boro"]], drop_first=True
    ),

    housing["value_per_sq_ft"],
    test_size=0.20,
    random_state=42,
)


Danger

Pay attention to the capitalization of the letter X when looking at scikit-learn tutorials and documentation. This is a convention that comes from matrix notation from statistics and mathematics.



We can get a score that indicates how well our model is performing using our test data.

lr = LinearRegression().fit(X_train, y_train)
print(lr.score(X_test, y_test))

0.6137125285030868

Since sklearn relies heavily on the numpy ndarray, the patsy library allows you to specify a formula just like the formula API in statsmodels, and it returns a proper numpy array you can use in sklearn.

Here is the same code as before, but using the dmatrices function in the patsy library.

from patsy import dmatrices

y, X = dmatrices(
    "value_per_sq_ft ~ units + sq_ft + boro",
    housing,
    return_type ="dataframe",
)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42
)

lr = LinearRegression().fit(X_train, y_train)
print(lr.score(X_test, y_test))

0.6137125285030818

To perform a k-fold cross-validation, we need to import this function from sklearn.

from sklearn.model_selection import KFold, cross_val_score

# get a fresh new housing data set
housing = pd.read_csv('data/housing_renamed.csv')

We now have to specify how many folds we want. This number depends on how many rows of data you have. If your data does not include too many observations, you may opt to select a smaller k (e.g., 2). Otherwise, a k between 5 to 10 is fairly common. However, keep in mind that the trade-off with higher k values is more computation time.

kf = KFold(n_splits=5)

y, X = dmatrices('value_per_sq_ft ~ units + sq_ft + boro', housing)

Next we can train and test our model on each fold.

coefs = [] scores
= []
for train, test in kf.split(X):
  X_train, X_test = X[train], X[test]
  y_train, y_test = y[train], y[test]
  lr = LinearRegression().fit(X_train, y_train)
  coefs.append(pd.DataFrame(lr.coef_))
  scores.append(lr.score(X_test, y_test))

We can also view the results.

coefs_df = pd.concat(coefs)
coefs_df.columns = X.design_info.column_names
print(coefs_df)

     Intercept  boro[T.Brooklyn]  boro[T.Manhattan]  boro[T.Queens]  \
0          0.0         33.369037         129.904011       32.103100
0          0.0         32.889925         116.957385       31.295956
0          0.0         30.975560         141.859327       32.043449
0          0.0         41.449196         130.779013       33.050968
0          0.0        -38.511915          56.069855      -17.557939

   boro[T.Staten Island]      units     sq_ft
0          -4.381085e+00  -0.205890  0.000220
0          -4.919232e+00  -0.146180  0.000155
0          -4.379916e+00  -0.179671  0.000194
0          -3.430209e+00  -0.207904  0.000232
0           3.552714e-15  -0.145829  0.000202

We can take a look at the average coefficient across all folds using .apply() and the np.mean() function.

import numpy as np
print(coefs_df.apply(np.mean))

Intercept                0.000000
boro[T.Brooklyn]        20.034361
boro[T.Manhattan]      115.113918
boro[T.Queens]          22.187107
boro[T.Staten Island]   -3.422088
units                   -0.177095
sq_ft                    0.000201
dtype: float64

We can also look at our scores. Each model has a default scoring method. LinearRegression(), for example, uses the R2 (coefficient of determination) regression score function.1

print(scores)

[0.02731416291043942, -0.5538362212110504, -0.1563637168806138,
-0.3234202061929452, -1.6929655586752923]

We can also use cross_val_scores (for cross-validation scores) to calculate our scores.

# use cross_val_scores to calculate CV scores
model = LinearRegression()
scores = cross_val_score(model, X, y, cv=5)
print(scores)

[ 0.02731416 -0.55383622 -0.15636372 -0.32342021 -1.69296556]

1. Scikit-learn R2 scoring: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.xhtml

When we compare multiple models to one another, we compare the average of the scores.

print(scores.mean())

-0.5398543080098925

Now we’ll refit all our models using k-fold cross-validation.

# create the predictor and response matrices
y1, X1 = dmatrices(
   "value_per_sq_ft ~ units + sq_ft + boro", housing)

y2, X2 = dmatrices("value_per_sq_ft ~ units*sq_ft + boro", housing)

y3, X3 = dmatrices(
  "value_per_sq_ft ~ units + sq_ft*boro + type", housing
)

y4, X4 = dmatrices(
    "value_per_sq_ft ~ units + sq_ft*boro + sq_ft*type", housing
)

y5, X5 = dmatrices("value_per_sq_ft ~ boro + type", housing)

# fit our models
model = LinearRegression()

scores1 = cross_val_score(model, X1, y1, cv=5)
scores2 = cross_val_score(model, X2, y2, cv=5)
scores3 = cross_val_score(model, X3, y3, cv=5)
scores4 = cross_val_score(model, X4, y4, cv=5)
scores5 = cross_val_score(model, X5, y5, cv=5)

We can now look at our cross-validation scores.

scores_df = pd.DataFrame(
    [scores1, scores2, scores3, scores4, scores5]
)

print(scores_df.apply(np.mean, axis=1))

0   -5.398543e-01
1   -1.088184e+00
2   -8.668885e+25
3   -7.634198e+25
4   -3.172546e+25
dtype: float64

Once again, we see that Model 4 has the best performance.

Conclusion

When we are working with models, it’s important to measure their performance. Using ANOVA for linear models, looking at deviance for GLM models, and using cross-validation are all ways we can measure error and performance when trying to pick the best model.
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Regularization

In Chapter 16, we considered various ways tois an open-source Python library for data measure model performance. Section 16.3 described k-fold cross-validation, a technique that tries to measure model performance by looking at how it predicts on test data. This chapter explores regularization, one technique to improve performance on test data. Specifically, this method aims to prevent overfitting.

17.1 Why Regularize?

Let’s begin with a base case of linear regression. We will be using the ACS data.

import pandas as pd
acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 'NumBedrooms',
       'NumChildren', 'NumPeople', 'NumRooms', 'NumUnits',
       'NumVehicles', 'NumWorkers', 'OwnRent', 'YearBuilt',
       'HouseCosts', 'ElectricBill', 'FoodStamp', 'HeatingFuel',
       'Insurance', 'Language'],
      dtype='object')

Now, let’s create our design matrices using patsy.

from patsy import dmatrices

# sequential strings get concatenated together in Python
response, predictors = dmatrices(
  "FamilyIncome ~ NumBedrooms + NumChildren + NumPeople + "
  "NumRooms + NumUnits + NumVehicles + NumWorkers + OwnRent + "
  "YearBuilt + ElectricBill + FoodStamp + HeatingFuel + "
  "Insurance + Language",
  data=acs,
)

With our predictor and response matrices created, we can use sklearn to split our data into training and testing sets.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
  predictors, response, random_state=0
)

Now, let’s fit our linear model. Here we are normalizing our data so we can compare our coefficients when we use our regularization techniques.

from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

lr = make_pipeline(
  StandardScaler(with_mean=False), LinearRegression()
)

lr = lr.fit(X_train, y_train)
print(lr)

Pipeline(steps=[('standardscaler', StandardScaler(with_mean=False)),
                ('linearregression', LinearRegression())])

model_coefs = pd.DataFrame(
  data=list(
    zip(
      predictors.design_info.column_names,
      lr.named_steps["linearregression"].coef_[0],
    )
  ),
  columns=["variable", "coef_lr"],
)

print(model_coefs)

                       variable      coef_lr
0                     Intercept 2.697159e-13
1   NumUnits[T.Single attached] 9.661755e+03
2   NumUnits[T.Single detached] 8.345408e+03
3           OwnRent[T.Outright] 2.382740e+03
4             OwnRent[T.Rented] 2.260806e+03
..                          ...          ...
34                     NumRooms 1.340575e+04
35                  NumVehicles 7.228920e+03
36                   NumWorkers 1.877535e+04
37                 ElectricBill 1.000008e+04
38                    Insurance 3.072892e+04

[39 rows x 2 columns]

Now, we can look at our model scores.

# score on the _training_ data
print(lr.score(X_train, y_train))

0.2726140465638568

# score on the _testing_ data
print(lr.score(X_test, y_test))

0.26976979568488013

In this particular case, our model demonstrates poor performance. In another potential scenario, we might have a high training score and a low test score—a sign of overfitting. Regularization solves this overfitting issue, by putting constraints on the coefficients and variables. This causes the coefficients of our data to be smaller. In the case of LASSO (least absolute shrinkage and selection operator) regression, some coefficients can actually be dropped (i.e., become 0), whereas in ridge regression, coefficients will approach 0, but are never dropped.

17.2 LASSO Regression

The first type of regularization technique is called LASSO, which stands for least absolute shrinkage and selection operator. It is also known as regression with L1 regularization.

We will fit the same model as we did in our linear regression.

from sklearn.linear_model import Lasso

lasso = make_pipeline(
  StandardScaler(with_mean=False),
  Lasso(max_iter=10000, random_state=42),
)

lasso = lasso.fit(X_test, y_test)
print(lasso)

Pipeline(steps=[('standardscaler', StandardScaler(with_mean=False)),
                ('lasso', Lasso(max_iter=10000, random_state=42))])

Now, let’s get a dataframe of coefficients, and combine them with our linear regression results.

coefs_lasso = pd.DataFrame(
  data=list(
    zip(
      predictors.design_info.column_names,
      lasso.named_steps["lasso"].coef_.tolist(),
    )
  ),
  columns=["variable", "coef_lasso"],
)

model_coefs = pd.merge(model_coefs, coefs_lasso, on='variable')
print(model_coefs)

                       variable       coef_lr    coef_lasso
0                     Intercept  2.697159e-13      0.000000
1   NumUnits[T.Single attached]  9.661755e+03   7765.482025
2   NumUnits[T.Single detached]  8.345408e+03   7512.067593
3           OwnRent[T.Outright]  2.382740e+03   2431.710977
4             OwnRent[T.Rented]  2.260806e+03    604.186925
..                          ...           ...           ...
34                     NumRooms  1.340575e+04  10940.150208
35                  NumVehicles  7.228920e+03   7724.681161
36                   NumWorkers  1.877535e+04  16911.035390
37                 ElectricBill  1.000008e+04   9516.123582
38                    Insurance  3.072892e+04  32155.544169

[39 rows x 3 columns]

Notice that the coefficients are now smaller than their original linear regression values. Additionally, some of the coefficients are now 0.

Finally, let’s look at our training and test data scores.

print(lasso.score(X_train, y_train))

0.2669751487716776

print(lasso.score(X_test, y_test))

0.2752627973740016

There isn’t much difference here, but you can see that the test results are now better than the training results. That is, there is an improvement in prediction when using new, unseen data.

17.3 Ridge Regression

Now let’s look at another regularization technique, ridge regression. It is also known as regression with L2 regularization.

Most of the code will be very similar to that seen with the previous methods. We will fit the model on our training data, and combine the results with our ongoing dataframe of results.

from sklearn.linear_model import Ridge

ridge = make_pipeline(
    StandardScaler(with_mean=False), Ridge(random_state=42)
)

ridge = ridge.fit(X_train, y_train)
print(ridge)

Pipeline(steps=[('standardscaler', StandardScaler(with_mean=False)),
                ('ridge', Ridge(random_state=42))])

coefs_ridge = pd.DataFrame(
  data=list(
    zip(
      predictors.design_info.column_names,
      ridge.named_steps["ridge"].coef_.tolist()[0],
    )
  ),
  columns=["variable", "coef_ridge"],
)

model_coefs = pd.merge(model_coefs, coefs_ridge, on="variable")
print(model_coefs)

                       variable       coef_lr    coef_lasso \
0                     Intercept  2.697159e-13      0.000000
1   NumUnits[T.Single attached]  9.661755e+03   7765.482025
2   NumUnits[T.Single detached]  8.345408e+03   7512.067593
3           OwnRent[T.Outright]  2.382740e+03   2431.710977
4             OwnRent[T.Rented]  2.260806e+03    604.186925
..                          ...           ...           ...
34                     NumRooms  1.340575e+04  10940.150208
35                  NumVehicles  7.228920e+03   7724.681161
36                   NumWorkers  1.877535e+04  16911.035390
37                 ElectricBill  1.000008e+04   9516.123582
38                    Insurance  3.072892e+04  32155.544169

      coef_ridge
0       0.000000
1    9659.413514
2    8342.247690
3    2381.429615
4    2259.526329
..           ...
34  13405.409584
35   7228.542922
36  18773.079462
37  10000.853603
38  30727.230542

[39 rows x 4 columns]

17.4 Elastic Net

The elastic net is a regularization technique that combines the ridge and LASSO regression techniques.

from sklearn.linear_model import ElasticNet

en = ElasticNet(random_state=42).fit(X_train, y_train)

coefs_en = pd.DataFrame(
    list(zip(predictors.design_info.column_names, en.coef_)),
    columns=["variable", "coef_en"],
)

model_coefs = pd.merge(model_coefs, coefs_en, on="variable")
print(model_coefs)

                       variable       coef_lr    coef_lasso \
0                     Intercept  2.697159e-13      0.000000
1   NumUnits[T.Single attached]  9.661755e+03   7765.482025
2   NumUnits[T.Single detached]  8.345408e+03   7512.067593
3           OwnRent[T.Outright]  2.382740e+03   2431.710977
4             OwnRent[T.Rented]  2.260806e+03    604.186925
..                         ...            ...           ...
34                     NumRooms  1.340575e+04  10940.150208
35                  NumVehicles  7.228920e+03   7724.681161
36                   NumWorkers  1.877535e+04  16911.035390
37                 ElectricBill  1.000008e+04   9516.123582
38                    Insurance  3.072892e+04  32155.544169

      coef_ridge       coef_en
0       0.000000      0.000000
1    9659.413514   1342.291706
2    8342.247690    168.728479
3    2381.429615    445.533238
4    2259.526329   -600.673747
..           ...           ...
34  13405.409584   5685.101939
35   7228.542922   6059.776166
36  18773.079462  12247.547800
37  10000.853603     97.566664
38  30727.230542     32.484207

[39 rows x 5 columns]

The ElasticNet object has two parameters, alpha and l1_ratio, that allow you to control the behavior of the model. The l1_ratio parameter specifically controls how much of the L2 or L1 penalty is used. If l1_ratio = 0, then the model will behave as described by ridge regression. If l1_ratio = 1, then the model will behave as described by LASSO regression. Any value in between will give some combination of the ridge and LASSO regression results.

Since LASSO regression can zero out coefficients, let’s just see how the coefficients compare with just the variables where LASSO has turned into a 0.

print(model_coefs.loc[model_coefs["coef_lasso"] == 0])

                variable       coef_lr coef_lasso   coef_ridge \
0              Intercept  2.697159e-13        0.0     0.000000
25  HeatingFuel[T.Solar]  1.442204e+02        0.0   142.354045

     coef_en
0   0.000000
25  0.994142

17.5 Cross-Validation

Cross-validation (first described in Section 16.3) is a commonly used technique when fitting models. It was mentioned at the beginning of this chapter, as a segue to regularization, but it is also a way to pick optimal parameters for regularization. Since the user must tune certain parameters (also known as hyper-parameters), cross-validation can be used to try out various combinations of these hyper-parameters to pick the “best” model. The ElasticNet object has a similar function called ElasticNetCV that can iteratively fit the elastic net with various hyper-parameter values1.

1. ElasticNetCV documentation: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.xhtml

from sklearn.linear_model import ElasticNetCV

en_cv = ElasticNetCV(cv=5, random_state=42).fit(
    X_train, y_train.ravel()# ravel is to remove the 1d warning
)

coefs_en_cv = pd.DataFrame(
    list(zip(predictors.design_info.column_names, en_cv.coef_)),
    columns=["variable", "coef_en_cv"],
)
model_coefs = pd.merge(model_coefs, coefs_en_cv, on="variable")
print(model_coefs)

                       variable       coef_lr    coef_lasso \
0                     Intercept  2.697159e-13      0.000000
1   NumUnits[T.Single attached]  9.661755e+03   7765.482025
2   NumUnits[T.Single detached]  8.345408e+03   7512.067593
3           OwnRent[T.Outright]  2.382740e+03   2431.710977
4             OwnRent[T.Rented]  2.260806e+03    604.186925
..                          ...           ...           ...
34                     NumRooms  1.340575e+04  10940.150208
35                  NumVehicles  7.228920e+03   7724.681161
36                   NumWorkers  1.877535e+04  16911.035390
37                 ElectricBill  1.000008e+04   9516.123582
38                    Insurance  3.072892e+04  32155.544169

      coef_ridge       coef_en  coef_en_cv
0       0.000000      0.000000    0.000000
1    9659.413514   1342.291706   -0.000000
2    8342.247690    168.728479    0.000000
3    2381.429615    445.533238    0.000000
4    2259.526329   -600.673747   -0.000000
..           ...           ...         ...
34  13405.409584   5685.101939    0.028443
35   7228.542922   6059.776166    0.000000
36  18773.079462  12247.547800    0.000000
37  10000.853603     97.566664   26.166320
38  30727.230542     32.484207   38.561748

[39 rows x 6 columns]

Let’s compare which coefficients were turned into 0.

print(model_coefs.loc[model_coefs["coef_en_cv"] ==0])

                       variable       coef_lr   coef_lasso \
0                     Intercept  2.697159e-13     0.000000
1   NumUnits[T.Single attached]  9.661755e+03  7765.482025
2   NumUnits[T.Single detached]  8.345408e+03  7512.067593
3           OwnRent[T.Outright]  2.382740e+03  2431.710977
4             OwnRent[T.Rented]  2.260806e+03   604.186925
..                          ...           ...          ...
31                  NumBedrooms  3.755708e+03  4447.892458
32                  NumChildren  9.524915e+03  6905.672216
33                    NumPeople -1.153672e+04 -8777.265840
35                  NumVehicles  7.228920e+03  7724.681161
36                   NumWorkers  1.877535e+04 16911.035390

      coef_ridge       coef_en   coef_en_cv
0       0.000000      0.000000          0.0
1    9659.413514   1342.291706         -0.0
2    8342.247690    168.728479          0.0
3    2381.429615    445.533238          0.0
4    2259.526329   -600.673747         -0.0
..           ...           ...          ...
31   3755.521256   2073.910045          0.0
32   9521.180875   2498.719581          0.0
33 -11533.098634  -2562.412933          0.0
35   7228.542922   6059.776166          0.0
36  18773.079462  12247.547800          0.0

[36 rows x 6 columns]

17.6 Conclusion

Regularization is a technique used to prevent overfitting of data. It achieves this goal by applying some penalty for each feature added to the model. The end result either drops variables from the model or decreases the coefficients of the model. Both techniques try to fit the training data less accurately but hope to provide better predictions with data that has not been seen before. These techniques can be combined (as seen in the elastic net), and can also be iterated over and improved with cross-validation.
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Clustering

Machine learning methods can generally be classified into two main categories of models: supervised learning and unsupervised learning. Thus far, we have been working on supervised learning models, since we train our models with a target y or response variable. In other words, in the training data for our models, we know the “correct” answer. Unsupervised models are modeling techniques in which the “correct” answer is unknown. Many of these methods involve clustering, where the two main methods are k-means clustering and hierarchical clustering.

18.1 k-Means

The technique known as k-means works by first selecting how many clusters, k, exist in the data. The algorithm randomly selects k points in the data and calculates the distance from every data point to the initially selected k points. The closest points to each of the k clusters are assigned to the same cluster group. The center of each cluster is then designated as the new cluster centroid. The process is then repeated, with the distance of each point to each cluster centroid being calculated and assigned to a cluster and a new centroid picked. This algorithm is repeated until convergence occurs.

Great visualizations1 and explanations2 of how k-means works can be found on the Internet. We’ll use data about wines for our k-means example.

1. Visualizing k-means: http://shabal.in/visuals.xhtml

2. Visualization and explanation of k-means: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

import pandas as pd
wine = pd.read_csv('data/wine.csv')

We will drop the Cultivar column since it correlates too closely with the actual clusters in our data.

wine = wine.drop('Cultivar', axis=1)

# note that the data values are all numeric
print(wine.columns)

Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash ',
        'Magnesium', 'Total phenols', 'Flavanoids',
        'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity',
        'Hue', 'OD280/OD315 of diluted wines', 'Proline '],
      dtype='object')

print(wine.head())

   Alcohol  Malic acid   Ash  Alcalinity of ash   Magnesium \
0    14.23        1.71  2.43               15.6         127
1    13.20        1.78  2.14               11.2         100
2    13.16        2.36  2.67               18.6         101
3    14.37        1.95  2.50               16.8         113
4    13.24        2.59  2.87               21.0         118

   Total phenols  Flavanoids  Nonflavanoid phenols  Proanthocyanins \
0           2.80        3.06                  0.28             2.29
1           2.65        2.76                  0.26             1.28
2           2.80        3.24                  0.30             2.81
3           3.85        3.49                  0.24             2.18
4           2.80        2.69                  0.39             1.82

   Color intensity   Hue  OD280/OD315 of diluted wines \
0             5.64  1.04                          3.92
1             4.38  1.05                          3.40
2             5.68  1.03                          3.17
3             7.80  0.86                          3.45
4             4.32  1.04                          2.93

   Proline
0                 1065
1                 1050
2                 1185
3                 1480
4                  735

sklearn has an implementation of the k-means algorithm called KMeans. Here we will set k = 3, and use all the data in our data set.

We will create k=3 clusters with a random seed of 42. You can opt to leave out the random_state parameter or use a different value; the 42 will ensure your results are the same as those printed in the book.

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=42).fit(wine.values)

Here’s our kmeans object.

print(kmeans)

KMeans(n_clusters=3, random_state=42)

We can see that since we specified three clusters, there are only three unique labels.

import numpy as np
print(np.unique(kmeans.labels_, return_counts=True))

(array([0, 1, 2], dtype=int32), array([69, 47, 62]))

kmeans_3 = pd.DataFrame(kmeans.labels_, columns=['cluster'])
print(kmeans_3)

    cluster
0         1
1         1
2         1
3         1
4         2
..      ...
173       2
174       2
175       2
176       2
177       0

[178 rows x 1 columns]

Finally, we can visualize our clusters. Since humans can visualize things in only three dimensions, we need to reduce the number of dimensions for our data. Our wine data set has 13 columns, and we need to reduce this number to three so we can understand what is going on. Furthermore, since we are trying to plot the points in a book (a non-interactive medium), we should reduce the number of dimensions to two, if possible.

18.1.1 Dimension Reduction With PCA

Principal component analysis (PCA) is a projection technique that is used to reduce the number of dimensions for a data set. It works by finding a lower dimension in the data such that the variance is maximized. Imagine a three-dimensional sphere of points. PCA essentially shines a light through these points and casts a shadow in the lower two-dimensional plane. Ideally, the shadows will be spread out as much as possible. While points that are far apart in PCA may not be cause for concern, points that are far apart in the original 3D sphere can have the light shine through them in such a way that the shadows cast are right next to one another. Be careful when trying to interpret points that are close to one another because it is possible that these points could could be farther apart in the original space.

We import PCA from sklearn.

from sklearn.decomposition import PCA

We tell PCA how many dimensions (i.e., principal components) we want to project our data into. Here we are projecting our data down into two components.

# project our data into 2 components
pca = PCA(n_components=2).fit(wine)

Next, we need to transform our data into the new space and add the transformation to our data set.

# transform our data into the new space
pca_trans = pca.transform(wine)

# give our projections a name
pca_trans_df = pd.DataFrame(pca_trans, columns=['pca1', 'pca2'])

# concatenate our data
kmeans_3 = pd.concat([kmeans_3, pca_trans_df], axis=1)

print(kmeans_3)

     cluster        pca1       pca2
0          1  318.562979  21.492131
1          1  303.097420  -5.364718
2          1  438.061133  -6.537309
3          1  733.240139   0.192729
4          2  -11.571428  18.489995
..       ...         ...        ...
173        2   -6.980211  -4.541137
174        2    3.131605   2.335191
175        2   88.458074  18.776285
176        2   93.456242  18.670819
177        0 -186.943190  -0.213331

[178 rows x 3 columns]

Finally, we can plot our results (Figure 18.1).

import seaborn as sns
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

sns.scatterplot(
  x="pca1",
  y="pca2",
  data=kmeans_3,
  hue="cluster",
  ax=ax
)

plt.show()


[image: Images]

Figure 18.1 k-means plot using PCA



Now that we’ve seen what k-means does to our wine data, let’s load the original data set again and keep the Cultivar column we dropped.

wine_all = pd.read_csv('data/wine.csv')
print(wine_all.head())

   Cultivar  Alcohol  Malic acid   Ash  Alcalinity of ash \
0         1    14.23        1.71  2.43               15.6
1         1    13.20        1.78  2.14               11.2
2         1    13.16        2.36  2.67               18.6
3         1    14.37        1.95  2.50               16.8
4         1    13.24        2.59  2.87               21.0

   Magnesium  Total phenols  Flavanoids  Nonflavanoid phenols \
0        127           2.80        3.06                  0.28
1        100           2.65        2.76                  0.26
2        101           2.80        3.24                  0.30
3        113           3.85        3.49                  0.24
4        118           2.80        2.69                  0.39

   Proanthocyanins  Color intensity   Hue \
0             2.29             5.64  1.04
1             1.28             4.38  1.05
2             2.81             5.68  1.03
3             2.18             7.80  0.86
4             1.82             4.32  1.04

   OD280/OD315 of diluted wines  Proline
0                          3.92              1065
1                          3.40              1050
2                          3.17              1185
3                          3.45              1480
4                          2.93               735

We’ll run PCA on our data, just as before, and compare the clusters from PCA and the variables from Cultivar.

pca_all = PCA(n_components=2).fit(wine_all)
pca_all_trans = pca_all.transform(wine_all)
pca_all_trans_df = pd.DataFrame(
  pca_all_trans, columns=["pca_all_1", "pca_all_2"]
)

kmeans_3 = pd.concat(
  [kmeans_3, pca_all_trans_df, wine_all["Cultivar"]], axis=1
)

We can compare the groupings by faceting our plot (Figure 18.2).

with sns.plotting_context(context="talk"):
  fig = sns.relplot(
    x="pca_all_1",
    y="pca_all_2",
    data=kmeans_3,
    row="cluster",
    col="Cultivar",
  )

fig.figure.set_tight_layout(True)
plt.show()

Alternatively, we can look at a cross-tabulated frequency count.

print(
  pd.crosstab(
    kmeans_3["cluster"], kmeans_3["Cultivar"], margins=True
  )
)

Cultivar cluster   1   2   3   All
 0       0   50   19   69
1       46    1    0   47
2       13   20   29   62
All     59   71   48  178


[image: Images]

Figure 18.2 Faceted k-means plot



18.2 Hierarchical Clustering

As the name suggests, hierarchical clustering aims to build a hierarchy of clusters. It can accomplish this with a bottom-up (agglomerative) or top-town (decisive) approach.

We can perform this type of clustering with the scipy library.

from scipy.cluster import hierarchy

We’ll load up a clean wine data set again, and drop the Cultivar column.

wine = pd.read_csv('data/wine.csv')
wine = wine.drop('Cultivar', axis=1)

Many different formulations of the hierarchical clustering algorithm are possible. We can use matplotlib to plot the results.

import matplotlib.pyplot as plt

Below we will cover a few clustering algorithms, they all work slightly differently, but but they can lead to different results.

[image: Images] Complete: Tries to make the clusters as similar to one another as possible

[image: Images] Single: Creates looser and closer clusters by linking as many of them as possible

[image: Images] Average and Centroid: Some combination between complete and single

[image: Images] Ward: Minimizes the distance between the points within each cluster

18.2.1 Complete Clustering

A hierarchical cluster using the complete clustering algorithm is shown in Figure 18.3.

wine_complete = hierarchy.complete(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_complete)
plt.show()

18.2.2 Single Clustering

A hierarchical cluster using the single clustering algorithm is shown in Figure 18.4.


[image: Images]

Figure 18.3 Hierarchical clustering: complete




[image: Images]

Figure 18.4 Hierarchical clustering: single



wine_single = hierarchy.single(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_single)
plt.show()

18.2.3 Average Clustering

A hierarchical cluster using the average clustering algorithm is shown in Figure 18.5.

wine_average = hierarchy.average(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_average)
plt.show()

18.2.4 Centroid Clustering

A hierarchical cluster using the centroid clustering algorithm is shown in Figure 18.6.

wine_centroid = hierarchy.centroid(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_centroid)
plt.show()


[image: Images]

Figure 18.5 Hierarchical clustering: average




[image: Images]

Figure 18.6 Hierarchical clustering: centroid



18.2.5 Ward Clustering

A hierarchical cluster using the ward clustering algorithm is shown in Figure 18.7.

wine_ward = hierarchy.ward(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(wine_ward)
plt.show()


[image: Images]

Figure 18.7 Hierarchical clustering: ward




[image: Images]

Figure 18.8 Manual hierarchical clustering threshold



18.2.6 Manually Setting the Threshold

We can pass in a value for color_threshold to color the groups based on a specific threshold (Figure 18.8). By default, scipy uses the default MATLAB values.

wine_complete = hierarchy.complete(wine)
fig = plt.figure()
dn = hierarchy.dendrogram(
     wine_complete,
     # default MATLAB threshold
     color_threshold=0.7 * max(wine_complete[:,2]),
     above_threshold_color='y')
plt.show()

Conclusion

When you are trying to find the underlying structure in a data set, you will often use unsupervised machine learning methods. k-Means and hierarchical clustering are two methods commonly used to solve this problem. The key is to tune your models either by specifying a value for k in k-means or a threshold value in hierarchical clustering that makes sense for the question you are trying to answer.

It is also common practice to mix multiple types of analysis techniques to solve a problem. For example, you might use an unsupervised learning method to cluster your data and then use these clusters as features in another analysis method.



Part V

Conclusion

Chapter 19 Life Outside of Pandas

Chapter 20 It’s Dangerous to Go Alone!

If you made it to this part of the book, thank you for reading, and I hope you enjoyed following along and learning the fundamental skills for processing data in Python.

You may hit some of the limitations of Pandas as your data needs grow. Chapter Chapter 19 points you to other libraries that expand and parallel Pandas. Finally, Chapter 20 talks about a lot of additional resources for you to continue learning.
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Life Outside of Pandas

19.1 The (Scientific) Computing Stack

When Jake VanderPlas1 gave the SciPy2 2015 keynote address,3 he titled his talk as “The State of the Stack”. Jake described how the community of packages that surround the core Python language developed. Python the language was created in the 1980s. Numerical computing began in 1995 and eventually evolved into the NumPy library in 2006. The NumPy library was the basis of the Pandas Series objects that we have worked with throughout this book. The core plotting library, Matplotlib, was created in 2002 and is also used within Pandas in the plot method. Pandas’s ability to work with heterogeneous data allows the analyst to clean different types of data for subsequent analysis using the scikits, which stemmed from the SciPy package in 2000.

1. Jake VanderPlas: http://vanderplas.com/

2. SciPy Conference: https://conference.scipy.org/

3. Jake’s SciPy 2015 keynote address: https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote

There have also been advances in how we interface with Python. In 2001, IPython was created to provide more interactivity with the language and the shell. In 2012, Project Jupyter created the interactive notebook for Python, which further solidified the language as a scientific computing platform, as this tool provides a easy and highly extensible way to do literate programming and much more.

However, the Python ecosystem includes more than just these few libraries and tools. SymPy4 is a fully functional computer algebra system (CAS) in Python that can do symbolic manipulation of mathematical formulas and equations. While Pandas is great for working with rectangular flat files and has support for hierarchical indices, the xarray library5 gives Python the ability to work with n-dimensional arrays. Thinking of Pandas as a two-dimensional dataframe—that is, as an array—gives us an n-dimensional dataframe. These types of data are frequently encountered within the scientific community.

4. SymPy: https://www.sympy.org/

5. Xarray: http://xarray.pydata.org/

19.2 Performance

“Premature optimization is the root of all evil”. Write your Python code in a way that works first, and that gives you a result which you can test. If it’s not fast enough, then you can work on optimizing the code. The SciPy ecosystem has libraries that make Python faster: cython and numba.

19.2.1 Timing Your Code

Appendix V Gives an example of using the Jupyter %%timeit cell magic to time your code. This can be helpful just to compare different methods or implementations, but does not necessarily tell you where to focus your efforts.

19.2.2 Profiling Your Code

Other tools such as cProfile6 and snakevis7 can help you time entire scripts and blocks of code and give a line-by-line breakdown of their execution. Additionally, snakevis comes with an IPython snakevis extension!

6. cProfile: https://docs.python.org/3/library/profile.xhtml#module-cProfile

7. Snakevis: https://jiffyclub.github.io/snakeviz/

19.2.3 Concurrent Futures

Many different libraries and frameworks are available to help scale up your computation. concurrent.futures8 allows you to to essentially rewrite the function calls into the built-in map function.9

8. concurrent.futures: https://docs.python.org/3/library/concurrent.futures.xhtml

9. Python map(): https://docs.python.org/3/library/functions.xhtml#map

19.3 Dask

Dask is another library that is geared toward working with large data sets.10 It allows you to create a computational graph, in which only calculations that are out of date need to be recalculated. Dask also parallelizes calculations on your own (single) machine or across multiple machines in a cluster. It creates a system in which you can write code on your laptop, and then quickly scale your code up to larger compute clusters. The nicest part of Dask is that its syntax aims to mimic the syntax from Pandas, which in turn lowers the overhead involved in learning to use this library.

10. Dask: https://www.dask.org/

19.4 Siuba

The tidyverse set of packages for the R programming language tried to break down each step in the data processing pipeline a single step. This allowed each step to be turned into separate function calls (aka verbs). This is similar to how method chaining works in Pandas. Siuba builds on top of the Pandas library and tries to port the Tidyverse verbs into Pandas.11

11. Siuba documentation: https://siuba.readthedocs.io

19.5 Ibis

The Ibis project provides a high-level API over tabular data.12 The main benefits is that it gives the user a consistent way to interact with databases, Dask, and Pandas.

12. Ibis project: https://ibis-project.org

19.6 Polars

Polars is a Python (and Rust) dataframe library built on top of Apache Arrow.13 It’s API is similar to Pandas, but relies heavily on method calls. It also removes Pandas indices, something this book has avoided for sake of simplicity. The Polars documentation contains a user’s guide that is worth looking into: https://polars.github.io/polars-book

13. Polars Library: https://www.pola.rs/

19.7 PyJanitor

pyjanitor is a Python library that extends Pandas DataFrame objects by providing additional DataFrame methods to make data processing a little easier.14 It is modeled after the R package, janitor, and has a lot of convenient methods for common data processing steps.

14. pyjanitor documentation: https://pyjanitor-devs.github.io/pyjanitor/

19.8 Pandera

Many of the steps in data process involve checking and validating data. The pandera provides a mechanism for you to test your data.15 For example, you can use it to make sure there are valid values for a particular column. The tools provided in pandera allow you to check your data and have the code fail when it does not meet assumptions before you model the data and make conclusions from it.

15. pandera documentation: https://pandera.readthedocs.io/

19.9 Machine Learning

This book aimed to lay a foundation to all the parts in the data science process. It’s hard to be completely inclusive and cover everything that a data scientist might need. Machine learning methods like XGBoost have become extremely popular for it’s ability to work with a wide variety of datas ets and perform well in prediction tasks.16 We’ve mentioned a little bit of scikit-learn pipelines in Section 13.4.17

16. XGBoost: https://xgboost.readthedocs.io/

17. scikit-learn pipelines: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.xhtml

To use these machine learning models in production we need to be able to maintain, version control, deploy, and monitor them. This is where MLOps (Machine Learning Operations) come into play, and tools like vetiver can help with that.18

18. Vetiver: https://vetiver.rstudio.com/

19.10 Publishing

This book was written in a publishing system called Quarto.19 This allows you to do “literate programming”, where you can mix prose text, with code, and code output. Why I like Quarto is that it is a single program that lets me write reports, books, websites, presentations, etc. It also allows me to work in R and Python simultaneously, which this book also does in Appendix Z.

19. Quarto: https://quarto.org/docs/books

JupyterBook is another literate programming platform that builds on Jupyter Notebooks to create a book format.20

20. JupyterBook: https://jupyterbook.org/

19.11 Dasboards

Over the years many dashboard libraries have been created for Python. Dash21, Streamlit22, Panel23, and Voilà24 are some of them. I’ve personally done a lot of my data science result communication work in the R ecosystem, so I’m happy that Shiny for Python25 was recently announced at the time of writing, since it similar to what I already know. All the dashboard platforms have pros and cons and have tradeoffs with learning curve, scalability, and flexibility.

21. Dash: https://plotly.com/dash/

22. Streamlit: https://streamlit.io/

23. Panel: https://panel.holoviz.org/

24. Voilà: https://voila.readthedocs.io

25. Shiny for Python: https://shiny.rstudio.com/py/

Conclusion

Pandas is a popular data science library in Python. It’s ubiquity has made it the goto library when working with data in Python. However, it may not meet everyone’s needs and that is why so many other libraries have been built to parallel or extend pandas. This book mainly focuses around Pandas as the tool to help you think about data processing and give you the foundation to explore other dataframe libraries.

Look out for additional chapters published for free with the book. Many of the libraries mentioned in this part of the book will be expanded upon and released online.
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It’s Dangerous to Go Alone!

Heed this advice! One of the best ways to learn a language is to work on a problem with other people. For example, in pair-programming, two people program together. Alternatively, one person can do the typing while the other person talks through the code. This allows two sets of eyes to look at the code, improves communication between the two colleagues, and gives a sense of ownership. These shared-programming techniques both contribute to higher-quality code and make programming fun, which means you’re more likely to improve by doing it more often.

20.1 Local Meetups

Many cities have a Meetup culture in which people can find a common hobby or topic and have a place to “meet up”.1 Python-specific meetups exist, but it’s worth going to others that focus on data cleaning, visualization, or machine learning. Even meetups in other languages can be helpful. The more you expose yourself to the community and the field, the more connections you can make with your own work.

1. Meetup: https://www.meetup.com/

If there isn’t a meetup in your city, create one! You can start with friends and people who are interested, and begin to host regular times to meet and talk. Keep it fun. Talk about topics of interest at a bar. Again, the more enjoyable something is, the more likely you are to do it.

Since the COVID-19 pandemic, many meetups have moved to virtual + online, and hybrid options for meetups are becoming the norm.

20.2 Conferences

Conferences are a great way to learn about the latest libraries and techniques. You also get to meet new people as well as library maintainers. Many conferences sponsor a “sprint day”, during which people are encouraged to work on code and contribute to a library. This is a great way to learn about the library itself, to improve your programming skills, and to contribute to the community.

PyCon is the main Python conference.2 It includes topics across the entire Python ecosystem, such as Django3 and Flask[4 for web development. The talks for these conferences are usually recorded and freely available.5 The SciPy6 and EuroSciPy7 conferences focus more on the scientific and analytics stack aspects of Python. I have attended SciPy over the past few years, and I can assure you that the tutorials cover a vast set of topics. The best way to view the conference tutorials and talks is to find the respective youtube page for the conference.

2. PyCon conference: https://us.pycon.org

3. Django: www.djangoproject.com

4. Flask: https://flask.palletsprojects.com

5. Python 2017 talks: www.youtube.com/channel/UCrJhliKNQ8g0qoE_zvL8eVg

6. SciPy Conference: https://conference.scipy.org

7. EuroSciPy Conference: https://www.euroscipy.org/

AnacondaCon is a newer conference that likewise has videos posted online.8 Jupyter also hosts its own conferences. Jupyter Days and JupyterCon have videos, and you can hear when the next conference is on the main Jupyter blog.9 Finally, PyData, the nonprofit that supports many open-source projects, sponsors conferences and provides videos.10

8. AnacondaCon Conference: https://anacondacon.io/

9. JupyterCon Conference https://jupytercon.com/

10. PyData: https://pydata.org/

20.3 The Carpentries

The Carpentries is a nonprofit organization that aims to teach all the programming and data skills to researchers. It’s where I got my start into data science education. Software-Carpentry, Data Carpentry, and Library Carpentry are sister organizations under The Carpentries.

The Carpentries does a great job sharing their lesson materials. If you ever need a resource to learn or teach out of, I cannot recommend the materials from The Carpentries enough: https://carpentries.org/workshops-curricula/.

20.4 Podcasts

Data science related podcasts are plentiful. Here are some that I listen to (in no particular order):

[image: Images] Vanishing Gradients: https://vanishinggradients.fireside.fm/

[image: Images] Data Skeptic: https://dataskeptic.com/

[image: Images] Talk Python to Me: https://talkpython.fm/

[image: Images] Python Bytes: https://pythonbytes.fm/

[image: Images] Super Data Science: https://www.superdatascience.com/podcast

[image: Images] Shiny Developer Series: https://shinydevseries.com/

[image: Images] R Weekly Highlights: https://rweekly.fireside.fm/

[image: Images] Not So Standard Deviations: https://nssdeviations.com/

[image: Images] Partially Derivative (discontinued): http://partiallyderivative.com/

[image: Images] Linear Digressions (discontinued): http://lineardigressions.com/

[image: Images] Becoming a Data Scientist (discontinued): www.becomingadatascientist.com

While this isn’t an exhaustive list, these podcasts will give you a good sense of the Python and data science community and the tools, news, and thinking behind many data science methods.

20.5 Other Resources

Instead of trying to create a list of Python resources in a book, I’ve started a project called “The Big Book of Python” that aims to parallel “The Big Book of R”. These resources aim to curate a bunch of free resources into a single page. I hope these resources help you with your future data science journey.

[image: Images] https://www.bigbookofpython.com/

[image: Images] https://www.bigbookofr.com/

Conclusion

This book was intended to provide you with a solid foundation from which to learn more about Pandas and its related libraries. Be sure to check out the accompanying github repository for the book for updates and additional resources: https://github.com/
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Concept Maps
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Figure A.1 Concept Map for Pandas DataFrame Basics
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Figure A.2 Concept Map for Pandas Data Structures Basics
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Figure A.3 Concept Map for Plotting Basics
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Figure A.4 Concept Map for Tidy Data
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Figure A.5 Concept Map for Apply Functions





B

Installation and Setup

B.1 Install Python

Since Software-Carpentry has been using the Anaconda distribution, I will be using it for the installation instructions described in this appendix. You can also find the generic workshop template installation instructions for Python here:

https://carpentries.github.io/workshop-template/#python

B.1.1 Anaconda

For the most part, the directions listed on the main Anaconda download site will be the same as the ones listed in this book.1 You can also look at the Anaconda installation documentation.2 Be sure to use the Python 3 version. If you also need to have Python 2, follow the instructions in Appendix F on creating Python environments.

1. https://www.anaconda.com/products/distribution

2. https://docs.continuum.io/anaconda/install/

B.1.1.1 Windows

Install Anaconda using the Windows installer with all the default settings. Make sure you check off the box for Add Anaconda to my PATH environment variable.

B.1.1.2 Mac

Install Anaconda using the Mac installer with all the default settings.

B.1.1.3 Linux

Installing on Linux involves downloading the .sh file and running it from the command line. You can do this by navigating to the Anaconda download site and downloading the .sh file there. Alternatively, if you are on a server, for example, you can use the wget command. Assuming the .sh file is in your Downloads folder:

cd ~/Downloads
bash Anaconda3- * .sh  # your version number will differ

Note that the version of Anaconda will be different by the time this book is published.

Keeping the default options is a good choice. When the installation process asks you to read the license agreement, you can press q to exit or accept by typing yes.

Type yes when the installer asks to prepend Anaconda to the PATH. This this makes Anaconda the default Python distribution on the system.

When you are done, close the current terminal window. Any new terminal moving forward will default to the Anaconda Python distribution.

B.1.2 Miniconda

Anaconda is a big download because it comes with a lot of packages and dependencies pre-installed. Miniconda is an alternative to the full Anaconda distribution. It only comes with Python installed, and all the other packages need to be installed manually.

B.1.3 Uninstall Anaconda or Miniconda

Since Anaconda will create an Anaconda3 folder in your home directory, deleting this folder will completely remove anything associated with Anaconda on the machine. This is one of my favorite features of using Anaconda. If I install a bad Python package, I can reset everything back to “normal” by deleting the Anaconda3 folder.

For Miniconda, you will have a miniconda3 folder instead.

B.1.4 Pyenv

Pyenv is a tool that lets you manage different versions of Python. It also has a plugin for you to also manage package environments. The benefit that pyenv has over conda is that it plays a little bit nicer with other tools outside of Python, since it only manages the Python version.

Below are some resources to install, setup, and usepyenv

[image: Images] Posit, PBC (formerly RStudio, PBC has a minimal viable python setup instruction for Pyenv: https://solutions.rstudio.com/python/minimum-viable-python/

[image: Images] Calvin Hendryx-Parker gave a great talk at PyCon 2022 on Bootstrapping Your Local Python Environment that goes over the Pyenv setup with the pyenv-virtualenv plugin: https://www.youtube.com/watch?v=-YEUFGFHWgQ

[image: Images] Real Python Managing Multiple Python Versions With pyenv: https://realpython.com/intro-to-pyenv/

The main downside is that Pyenv plugins are not supported on Windows. That means the very useful pyenv-virtualenv plugin isn’t usable. For that reason, if you want to go to Pyenv route, I suggest you look into Pipenv for the virtual environment management, and use Pyenv for the Python version management. This way, you have a setup that is OS agnostic.

B.2 Install Python Packages

See Appendix H for how to install the packages needed to code along this book. If you are using a Python setup other than Anaconda (or its derivatives that use conda), You need to replace the conda install command with pip install.

B.3 Download Book Data

You can download the datasets for the book by going to the book’s repository and downloading the ZIP file of the repo.

The book’s repository can be found here:

https://github.com/chendaniely/pandas_for_everyone

You can do this by going to the main repository page, then clicking Code > Download ZIP (Figure B-1).


[image: Images]

Figure B.1 This will download everything in the repository, as well as provide a folder in which you can put your Python scripts or notebooks. You can also copy the data folder from the repository and put it in a folder of your choosing. The instructions on the GitHub repository will be updated as necessary to facilitate downloading the data for the book.





C

Command Line

Having some familiarity with the command line can go a very long way. My main suggestion is to go through the Software-Carpentry Unix Shell lesson.1 The “Navigating Files and Directories” episode (i.e., lesson) is probably the most important lesson there for this book, but learning about “Shell Scripts” is also important when you are running your Python code from the command line.

1. https://swcarpentry.github.io/shell-novice/

Since this book is mainly a Python book about Pandas, I won’t be able to go over all of the topics in learning the Unix Shell. The main takeaway I want to convey in this appendix is the notion of a “working directory”.

C.1 Installation

Likely, if you are on a Mac or Linux system, you will already have access to the Bash Shell. By default, Windows does not have it installed.

C.1.1 Windows

In Windows, the best installation approach is to follow the Software-Carpentry Bash Shell instructions.2 You will be installing Git for Windows,3 which will also provide the Bash Shell.

2. https://carpentries.github.io/workshop-template/#shell

3. https://gitforwindows.org/

If you do not want to use Git for Windows, Anaconda also comes with its own Anaconda Prompt that you can use to run Python code from the command line. The only difference here is that the Anaconda Prompt will use Windows command line commands, instead of the UNIX-like ones on a Mac or Linux system. However, running your Python scripts from the command line will be the same.

C.1.2 Mac

You can find the Terminal application in Applications / Utilities. That is, in your main application folder, there will be a folder called Utilities, where you can find the Terminal.

iTerm2 is a popular alternative to the default Mac Terminal application.4

4. https://iterm2.com/

C.1.3 Linux

The terminal and bash are set up on Linux systems by default.

C.2 Basics

At minimum, you should know the following commands:

[image: Images] Where you currently are in your file system (Windows, Mac, Linux: pwd)

[image: Images] List the contents of the current folder you are in (Windows: dir, Mac, Linux: ls)

[image: Images] Change to a different folder (: cd <folder name>)

[image: Images] Run a Python script (Windows, Mac, Linux: python <python script>.py)

Another useful “command” is .. (two dots), which refers to the parent folder of where you are now (Windows, Mac, Linux: pwd).



D

Project Templates

It is very easy and convenient to put all the data, code, and outputs in the same folder. However, this convenience is negated by disadvantages of having a messy project folder. That is, putting everything into a single folder can easily lead to a folder on your computer with tens or hundreds of files, which can become unmanageable and confusing for not only others, but yourself.

At minimum, I suggest the following folder structure for any analysis project:

my_project/
  |
  |- data/
  |
  |- analysis/
  |
  +- output/

I put all my data sets in the data folder, any code I write for analysis in the analysis folder (sometimes I will name this code or src), and finally cleaned data sets or other outputs such as figures in the output folder. You can adapt this general folder structure as you need.

Here is a paper reference that discusses the theory a bit further:

Noble WS. (2009). A Quick Guide to Organizing Computational Biology Projects. PLoS Comput Biol 5(7): e1000424. https://doi.org/10.1371/journal.pcbi.1000424



E

Using Python

There are many different ways to use Python. The “simplest” way is to use a text editor and terminal. However, projects like IPython and Jupyter have enhanced Python’s REPL (Read–Evaluate–Print–Loop) interface, making it one of the standard interfaces in the data analytics and scientific Python communities.

E.1 Command Line and Text Editor

To use Python from the command line and text editor, you need is a plain text editor and a terminal. Although any plain text editor would work, a “good” one would have a Python feature that will do syntax highlighting and auto-completion. These days VSCode has become a popular text editor that has good extensions for Python support:

https://code.visualstudio.com/

If you are on Windows, be careful not to do too much editing using the default Notepad application, especially if you plan to collaborate with users on other operating systems. Line endings in Notepad are different from those in Windows and on *nix machines (Linux and Macs). If you ever open up a Python file and the indentations and newlines do not appear correctly, it’s probably because of how Windows is interpreting the newline endings of the file.

When you work in a text editor, all your Python code will be saved in a .py script. You can run the script by executing it from the command line. For example, if your script’s name is my_script.py, you can execute all the code in the script, line-by-line, with the following command:

python my_script.py

More information about running Python scripts from the command line is found in Appendix C and Appendix F.

E.2 Python and IPython

Under Windows, Anaconda will provide an “Anaconda command prompt” application. This is just like the regular windows command prompt but is configured to use the Anaconda Python distribution. Typing python or ipython here will open the python or ipython command prompt, respectively.

For OSX and Linux, you can run the python or ipython command prompt by typing the respective command in a terminal.

There are a few differences between the python and ipython command prompts. The regular python prompt takes only Python commands, whereas the ipython prompt provides some useful additional commands you can type to enhance your Python experience. My personal suggestion is to use the ipython prompt.

You can directly type Python commands into either prompt, or you can save your code in a file and then copy/paste commands into the prompt to run your code.

E.3 Jupyter

Instead of running python or ipython in the command prompt to run Python, you can run the jupyter notebook or jupyter lab. This will open another Python interface in a web browser. Even though a web browser is opened, it does not actually need any Internet connection to run, nor is any information sent across the Internet.

The jupyter notebook will open in a location on your computer. You can create a new notebook by clicking the “New” button on the top right corner and selecting “python”. This will open up a “notebook” where you can type your python commands. Each cell provides a site where you can type your code, and you can run the cell by using the commands in the “Cell” menu bar. Alternatively, you can press Shift + Enter to run the cell and create a new cell below it, or press Ctrl + Enter to simply run the cell.

An especially useful aspect of the notebook is the ability to interweave your Python code, its output, and regular prose text. Similar to how the text, code, and output is presented in this book.

To change the cell type, make sure you have the cell selected. Then, on the top right below the menu bar, click a drop-down menu that says “Code”. If you change this to “Markdown”, you can write regular prose text that is not Python code to help interpret your results, or record notes about what your code is doing.

E.4 Integrated Development Environments (IDEs)

Anaconda comes with an IDE called Spyder. Those who are familiar with Matlab or RStudio might take comfort in having access to a similar interface.

Other IDEs include the following:

[image: Images] nteract: https://nteract.io/

[image: Images] PyCharm: https://www.jetbrains.com/pycharm/

[image: Images] VSCode: https://code.visualstudio.com/

I suggest exploring the various ways to use Python and seeing which works best for you. IPython/script, Jupyter notebook, and Spyder come pre-installed with Anaconda, so those would be the most accessible, but the other IDEs might work better for your particular circumstances.



F

Working Directories

Building on Appendix C, Appendix D, and Appendix E, this appendix covers working directories, especially when you are working with project templates (Appendix D).

A working directory simply tells the program where the base or reference location is. It’s common to place all of your code, data, output, figures, and other project files all in the same folder, because it means the working directory is easy to figure out. However, this practice can easily lead to a messy folder, as mentioned in Appendix D.

We like fully documented project templates that tell us where and how to run our scripts. With this approach, all our scripts have a predictable and consistent working directory.

There are a few ways to figure out what your current working directory is. If you are using IPython, then you can type pwd into the IPython prompt, and it will return the folder path of your current working directory. This method also works if you are using the Jupyter notebook.

If you are executing your Python code as scripts directly in the command line, then the working directory is the output after you run cd on Windows (note there is nothing else after the command), and pwd on OSX and Linux.

Here is an example of how working directories affect your code. Suppose you have the following project structure, where the current working directory is denoted by a star (*).

my_project/
  |
  |- data/
  |    |
  |    + data.csv
  |
  |- src/ *
  |    |
  |    + script.py
  |
  +- output/

If your script.py wants to read in a dataset from the data folder, it would have to do something like data = pd.read_csv('../data/data.csv'). Note that because the current working directory is in the src folder, to navigate to the data.csv, you need to go up one level .. to the my_project folder and then down into the data folder to get to your dataset. The benefit of this is that you can run your code by tying it to python script.py, though this can lead to some issues discussed later in this appendix.

Let’s use a different working directory:

my_project/ *
  |
  |- data/
  |   |
  |   + data.csv
  |
  |- src/
  |    |
  |    + script.py
  |
  +- output/

Now that the working directory is on the top level, script.py can reference the dataset with the command data = pd.read_csv('data/data.csv'). Note that you no longer need to go up a level to reference your data. However, now if you want to run your code, you have to reference the file as such: python src/script.py. This may be annoying, but it allows you to create any amount of subfolders, and data and output will always be referenced the same way across all the files.

It also means you as a user have one and only one working directory to execute any script in this project.



G

Environments

Using environments is a great way to work with different versions of Python and/or packages. It also provides an isolated environment to install everything so that if something goes wrong, it won’t affect the rest of the system. Python environments are particularly handy when you need different versions of packages installed across different projects. You can also use environments to see all the package dependencies.

G.1 Conda Environments

The Anaconda Python distribution comes with conda. The “Getting Started” guide is a useful resource in this case.1 If you installed Anaconda with Python 3 (Appendix B), this appendix will show you how to create a separate environment that has a different version of Python in it. If we run python in the command line, we will begin with Python 3.9. Your exact version will differ from that shown in this book.

1. https://conda.io/projects/conda/en/latest/user-guide/getting-started.xhtml

% python
Python 3.9.12 (main, Jun 1 2022, 06:34:44)
[Clang 12.0.0 ] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

To create a new environment we run the conda command from the command line. We use the create command within conda and specify a --name for the environment. Here we are naming our Python environment py38. By default, the system will create a Python 3.9 environment, so we have to specify our Python version with python=3.8.

# type this in the (bash) terminal, not in python
conda create  -n py38 python=3.8

After running the command, you will see the following output.

Collecting package metadata (current_repodata.json): done Solving environment: done

## Package Plan ##

  environment location: /Users/danielchen/anaconda3/envs/py38

  added / updated specs:
    - python=3.8

The following packages will be downloaded:

package                    |            build
---------------------------|-----------------
ca-certificates-2022.07.19 |       hca03da5_0         124 KB
certifi-2022.6.15          |   py38hca03da5_0         153 KB
libffi-3.4.2               |       hc377ac9_4         106 KB
ncurses-6.3                |       h1a28f6b_3         866 KB
openssl-1.1.1q             |       h1a28f6b_0         2.2 MB
pip-22.1.2                 |   py38hca03da5_0         2.5 MB
python-3.8.13              |       hbdb9e5c_0        10.6 MB
setuptools-63.4.1          |   py38hca03da5_0         1.1 MB
sqlite-3.39.2              |       h1058600_0         1.1 MB
------------------------------------------------------------
                                       Total:        18.6 MB

The following NEW packages will be INSTALLED:

ca-certificates pkgs/main/osx-arm64::ca-certificates-2022.07.19-hca03da5_0
certifi         pkgs/main/osx-arm64::certifi-2022.6.15-py38hca03da5_0
ibcxx           pkgs/main/osx-arm64::libcxx-12.0.0-hf6beb65_1
libffi          pkgs/main/osx-arm64::libffi-3.4.2-hc377ac9_4
ncurses         pkgs/main/osx-arm64::ncurses-6.3-h1a28f6b_3
openssl         pkgs/main/osx-arm64::openssl-1.1.1q-h1a28f6b_0
pip             pkgs/main/osx-arm64::pip-22.1.2-py38hca03da5_0
python          pkgs/main/osx-arm64::python-3.8.13-hbdb9e5c_0
readline        pkgs/main/osx-arm64::readline-8.1.2-h1a28f6b_1
setuptools      pkgs/main/osx-arm64::setuptools-63.4.1-py38hca03da5_0
sqlite          pkgs/main/osx-arm64::sqlite-3.39.2-h1058600_0
tk              pkgs/main/osx-arm64::tk-8.6.12-hb8d0fd4_0
wheel           pkgs/main/noarch::wheel-0.37.1-pyhd3eb1b0_0
xz              pkgs/main/osx-arm64::xz-5.2.5-h1a28f6b_1
zlib            pkgs/main/osx-arm64::zlib-1.2.12-h5a0b063_2

Proceed ([y]/n)? y

Downloading and Extracting Packages
certifi-2022.6.15    | 153 KB    | ########################## | 100%
python-3.8.13        | 10.6 MB   | ########################## | 100%
openssl-1.1.1q       | 2.2 MB    | ########################## | 100%
setuptools-63.4.1    | 1.1 MB    | ########################## | 100%
ca-certificates-2022 | 124 KB    | ########################## | 100%
pip-22.1.2           | 2.5 MB    | ########################## | 100%
sqlite-3.39.2        | 1.1 MB    | ########################## | 100%
ncurses-6.3          | 866 KB    | ########################## | 100%
libffi-3.4.2         | 106 KB    | ########################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate py38
#
# To deactivate an active environment, use
#
#     $ conda deactivate

The last few lines of the output tell you how you can use your newly created environment. If we run conda activate py38 from the command line now, our prompt will be prepended with our environment name. If we run python in the terminal to launch

Python, you will see that a different version of Python is now being used.

% python

Python 3.8.13 (default, Mar 28 2022, 06:13:39)
[Clang 12.0.0 ] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.

To delete an environment, navigate to your anaconda3 folder. A folder there called envs stores all your environments. In this example, if we delete the py38 folder within envs, it’s as if we never created our environment, and it will be removed.

Within a given environment, any package or library we install (Appendix H) within it will be specific to that particular environment. Thus, we can have not only different versions of Python between environments but also different versions of libraries. You can create a separate Python environment (p4e for “Pandas for Everyone”) for this book as well.}

conda create --name p4e python=3

You can install the libraries needed by following the instructions in Appendix H.

G.2 Pyenv + Pipenv

Calvin Hendryx-Parker gave a great talk at PyCon 2022 on Bootstrapping Your Local Python Environment that goes over the Pyenv setup with the pyenv-virtualenv plugin:

https://www.youtube.com/watch?v=-YEUFGFHWgQ

The Hitchhiker’s Guide to Python and Real Python also have resources on using Pipenv for virtual environments:

[image: Images] https://docs.python-guide.org/dev/virtualenvs/#virtualenvironments-ref

[image: Images] https://realpython.com/pipenv-guide/
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Install Packages

There will be times when you have to install a Python package that did not come with your distribution. If you used Anaconda to install Python, then you will have a package manager called conda.

conda has gained popularity over the past few years because of its ability to install Python packages that require non-Python dependencies. You may have heard of other package managers, such as pip.

This book uses a few packages that need to be installed. If you installed the entire Anaconda distribution, then libraries like Pandas are already installed. But there’s no harm in running the command to reinstall a library. Check the accompanying repository1 for all the commands to install the relevant libraries for this book.

1. https://github.com/chendaniely/pandas_for_everyone

We can use conda to install Python libraries. If you created a separate environment for the book (Appendix G), then you can conda activate p4e to get into the “Pandas for

Everyone” environment.

conda’s default repository is maintained by Anaconda, Inc (formerly known as Continuum Analytics). We can install the pandas package using conda.

# typed into your terminal, not in Python
conda install pandas

For certain packages that are not listed in the default channel, or if the default channel does not have the latest version of a package, we can use the and community-maintained conda-forge channel.2

2. https://conda-forge.org/

conda install -c conda-forge pandas

Lastly, if the package isn’t listed in conda, you can also use pip to install packages.

pip install pandas

For example, to install all the libraries used in this book, you can run the following lines:

conda install -c conda-forge pandas matplotlib pyarrow openpyxl \ 
  seaborn numba regex pandas-datareader statsmodels scikit-learn \ 
  arrow lifelines

Again, it’s a good idea to check the accompanying repository for the most recent installation and setup instructions.

H.1 Updating Packages

You can update conda itself with the following command:

conda update conda

Run this command to update all the packages in a given conda environment:

conda update --all

“Pandas-for-Everyone-2e” — 2022/9/29 — 16:13 — page 387
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Importing Libraries

Libraries provide additional functionality in an organized and packaged way. We mainly work with the Pandas library throughout this book, but there are times when we will import other libraries. You will see many different ways to import a library. The most basic way is to simply import the library by its name.

import pandas

When we import a library, we can use its functions within Pandas using dot notation.

print(pandas.read_csv('data/concat_1.csv'))

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Python gives us a way to alias libraries. This allows us to use an abbreviation for longer library names. To do so, we specify the alias after the as statement.

import pandas as pd

Now, instead of referring to the library as pandas, we can use our abbreviation, pd.

print(pd.read_csv('data/concat_1.csv'))

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Sometimes, if only a few functions are needed from a library, we can import them directly.

from pandas import read_csv

This will allow us to use the read_csv() function directly, without specifying the library it is coming from.

print(read_csv('data/concat_1.csv'))

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Finally, there is a method that enables users to import all the functions of a library directly into the namespace.

from pandas import *
from numpy import *
from scipy import *

This method is not recommended because libraries contain many functions, and a function can mask an existing function. For example, if we import all the functions from numpy and from scipy, which mean() function is used? It’s not as clear as saying numpy.mean() and scipy.mean().



J

Code Style

The Python Enhancement Proposal 8 (PEP8) discusses the official Python code style guide: https://peps.python.org/pep-0008/.

Reading through the style guide is a good way to learn the syntax of a language. Just keep in mind that you do not need to adhere to every single rule.

Tools like Black1 have been created for Python so your code can be automatically formatted. This is useful so you can have the tool do your formatting for you, and it’s one thing less for you to worry about.

1. https://github.com/psf/black

While writing this book, I used the online black playground, to format some of the code: https://black.vercel.app/. Not every piece of code in the book follows PEP8 or Black. Sometimes, the code puts in additional linebreaks to emphasize the code being taught.

J.1 Line breaks in code

Writing analysis code does get very wide at times. An additional constraint in the book is that the code needs to be even more narrow compared to the PEP8 rules.

There are two ways you can break up wide lines of code.

1. Using the \ at the end of a line to tell Python that the code continues on the next line

2. Wrapping your entire statement around a pair of round parentheses ( )

Let’s use the example from Section 4.3.

import pandas as pd
weather = pd.read_csv('data/weather.csv')

The first step in tidying up the dataset was to call the .melt() method.

# this code is wide and will run off the page
weather_melt = weather.melt(id_vars=["id", "year", "month", "element"],
var_name ="day", value_name ="temp")

This ends up being a wide line of code. So we can put in line breaks between the round parenthesis of the .melt() method call.

# previous line of code can be rewritten as
weather_melt = weather.melt(
  id_vars =["id", "year", "month", "element"],
  var_name ="day",
  value_name ="temp",
)

In Pandas, many of the methods can be chained together (Appendix U). A common practice is to put each method call on its own line. This way if your eyes look down a straight line, you can get a rough overview of all the steps your data is going through. However, just putting arbitrary line breaks outside of a function call does not work.

# this will error, putting line break before the .melt
# previous line of code can be rewritten as
weather_melt = weather
  .melt(
    id_vars=["id", "year", "month", "element"],
    var_name="day",
    value_name="temp")

IndentationError: unexpected indent (3804754158.py, line 4)

We can solve this by using one of the techniques listed above

# use a \ at the end of the line
weather_melt = weather \
  .melt(
    id_vars=["id", "year", "month", "element"],
    var_name="day",
    value_name="temp")

# wrap the entire statement around ( )
weather_melt = (weather
  .melt(
    id_vars=["id", "year", "month", "element"],
    var_name="day",
    value_name="temp")
)

The ( ) method is the style you will see more often reading Pandas code.
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Containers: Lists, Tuples, and Dictionaries

Python comes with built-in container objects. These objects store data and are also iterable, meaning there is a mechanism to iterate through the values stored in the container.

K.1 Lists

Lists are a fundamental data structure in Python. They are used to store heterogeneous data and are created with a pair of square brackets, [ ].

my_list = ['a', 1, True, 3.14]
print(my_list)

['a', 1, True, 3.14]

We can subset the list using square brackets and provide the index of the item we want.

# get the first item - index 0
print(my_list[0])

a

We can also pass in a range of values (Appendix P).

# get the first 3 values
print(my_list[:3])

['a', 1, True]

We can reassign values when we subset values from the list.

# reassign the first value
my_list[0] = 'zzzzz' 
print(my_list)

['zzzzz', 1, True, 3.14]

Lists are objects in Python (Appendix S), so they will have methods that they can perform. For example, we can .append() values to the list.

my_list.append('appended a new value!')
print(my_list)

['zzzzz', 1, True, 3.14, 'appended a new value!']

More about lists and their various methods can be found in the documentation.1

1. https://docs.python.org/3/tutorial/datastructures.xhtml#more-on-lists

K.2 Tuples

A tuple is similar to a list, in that both can hold heterogeneous bits of information. The main difference is that the contents of a tuple are “immutable”, meaning they cannot be changed. They are created with a pair of round parentheses, ( ).

my_tuple  =('a', 1, True, 3.14)
print(my_tuple)

('a', 1, True, 3.14)

Subsetting items can be accomplished in the same ways as for a list (i.e., you use square brackets).

# get the first item
print(my_tuple[0])

a

However, if we try to change the contents of an index, we will get an error.

# this will cause an error
my_tuple[0] = 'zzzzz'

TypeError: 'tuple' object does not support item assignment

More information about tuples can be found in the documentation.2

2. https://docs.python.org/3/tutorial/datastructures.xhtml#tuples-and-sequences

K.3 Dictionaries

Python dictionaries (dict) are efficient ways of storing information. Just as an actual dictionary stores a word and its corresponding definition, a Python dict stores some key and a corresponding value. Using dictionaries can make your code more readable because a label is assigned to each value in the dictionary. Contrast this with list objects, which are unlabeled. Dictionaries are created by using a set of curly braces, { }.

my_dict = {}
print(my_dict)

{}

print(type(my_dict))

<class 'dict'>

When we have a dict, we can add values to it by using square brackets, [ ]. We put the key inside these square brackets. Usually, it is some string, but it can actually be any immutable type (e.g., a Python tuple, which is the immutable form of a Python list). Here we create two keys, fname and lname, for a first name and last name, respectively.

my_dict['fname'] = 'Daniel'
my_dict['lname'] = 'Chen'

We can also create a dictionary directly, with key–value pairs instead of adding them one at a time. To do this, we use our curly braces, { }, with the key–value pairs being specified by a colon.

my_dict = {'fname': 'Daniel', 'lname': 'Chen'}
print(my_dict)

{'fname': 'Daniel', 'lname': 'Chen'}

To get the values from our keys, we can use the square brackets with the key inside.

fn = my_dict['fname']
print(fn)

Daniel

We can also use the .get() method.

ln = my_dict.get('lname')
print(ln)

Chen

The main difference between these two ways of getting the values from the dictionary is the behavior that occurs when you try to get a nonexistent key. When using the square-bracket notation, trying to get a key that does not exist will return an error.

# will return an error
print(my_dict['age'])

KeyError: 'age'

In contrast, the .get() method will return None.

# will return None
print(my_dict.get('age'))

None

To get all the keys from the dict, we can use the .keys() method.

# get all the keys in the dictionary
print(my_dict.keys())

dict_keys(['fname', 'lname'])

To get all the values from the dict, we can use the .values() method.

# get all the values in the dictionary
print(my_dict.values())

dict_values(['Daniel', 'Chen'])

To get every key–value pair, you can use the .items() method. This can be useful if you need to loop through a dictionary.

print(my_dict.items())

dict_items([('fname', 'Daniel'), ('lname', 'Chen')])

Each key–value pair is returned in a form of a tuple, as indicated by the use of round parentheses, ( ).

More on dictionaries can be found in the official documentation on data structures.3

3. https://docs.python.org/3/tutorial/datastructures.xhtml#dictionaries
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Slice Values

Slicing details were also described in Section 11.1.1.

Python is a zero-indexed language (things start counting from zero), and is also left inclusive, right exclusive you are when specifying a range of values. This applies to objects like lists and Series, where the first element has a position (index) of 0. When creating ranges or slicing a range of values from a list-like object, we need to specify both the beginning index and the ending index. This is where the left inclusive, right exclusive terminology comes into play. The left index will be included in the returned range or slice, but the right index will not.

Think of items in a list-like object as being fenced in. The index represents the fence post. When we specify a range or a slice, we are actually referring to the fence posts, so that everything between the posts is returned.

Figure L.1 illustrates why this may be the case. When we slice from 0 to 1, we get only one value back; when we slice from 1 to 3, we get two values back.

l = ['one', 'two', 'three']

print(l[0:1])

['one']

print(l[1:3])

['two', 'three']


Figure L.1 Think of Slicing Values as Referring to the Fence Posts

[image: Images]



The slicing notation used, :, comes in two parts. The value on the left denotes the starting value (left inclusive), and the value on the right denotes the ending value (right exclusive). We can leave one of these values blank, and the slicing will start from the beginning (if we leave the left value blank) or go to the end (if we leave the right value blank).

print(l[1:])

['two', 'three']

print(l[:3])

['one', 'two', 'three']

We can add a second colon, which refers to the “step”. For example, if we have a step value of 2, then for whatever range we specified using the first colon, the returned value will be every other value from the range.

# get every other value starting from the first value
print(l[::2])

['one', 'three']
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Loops

Loops provide a means to perform the same action across multiple items. Multiple items are typically stored in a Python list object. Any list-like object can be iterated over (e.g., tuples, arrays, dataframes, dictionaries). More information on loops can be found in the Software-Carpentry Python lesson on loops.1

1. https://swcarpentry.github.io/python-novice-inflammation/05-loop/index.xhtml

To loop over a list. we use a for statement. The basic for loop looks like this:

for item in container:
  # do something

The container represents some iterable set of values (e.g., a list). The item represents a temporary variable that represents each item in the iterable. In the for statement, the first element of the container is assigned to the temporary variable (in this example, item). Everything in the indented block after the colon is then performed. When it gets to the end of the loop, the code assigns the next element in the iterable to the temporary variable and performs the steps over again.

# an example list of values to iterate over
l = [1, 2, 3]

# write a for loop that prints the value and its squared value
for i in l:
  # print the current value
  print(f"the current value is: {i}")

  # print the square of the value
  print(f"its squared value is: {i*i}")

  # end of the loop, the \n at the end creates a new line
  print("end of loop, going back to the top\n")

the current value is: 1
its squared value is: 1
end of loop, going back to the top

the current value is: 2
its squared value is: 4
end of loop, going back to the top

the current value is: 3
its squared value is: 9
end of loop, going back to the top
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Comprehensions

A typical task in Python is to iterate over a list, run some function on each value, and save the results into a new list.

# create a list
l = [1, 2, 3, 4, 5]

# list of newly calculated results
r = []

# iterate over the list
for i in l:
  # square each number and add the new value to a new list
  r.append(i ** 2)

print(r)

[1, 4, 9, 16, 25]

Unfortunately, this approach requires a few lines of code to do a relatively simple task. One way to rewrite this loop more compactly is by using a Python list comprehension. This shortcut offers a concise way of performing the same action.

# note the square brackets around on the right-hand side
# this saves the final results as a list
rc = [i ** 2 for i in l]
print(rc)

[1, 4, 9, 16, 25]

print(type(rc))

<class 'list'>

Our final results will be a list, so the right-hand side will have a pair of square brackets. From there, we write what looks very similar to a for loop. Starting from the center and moving toward the right side, we write for i in l, which is very similar to the first line of our original for loop. On the right side, we write i ** 2, which is similar to the body of the for loop. Since we are using a list comprehension, we no longer need to specify the list to which we want to append our new values.
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Functions

Functions are one of the cornerstones of programming. They provide a way to reuse code. If you’ve ever copy-pasted lines of code just to change a few parameters, then turning those lines of code into a function not only makes your code more readable but also prevents you from making mistakes later on. Every time code is copy-pasted, it adds another place to look if a correction is needed, and puts that burden on the programmer. When you use a function, you need to make a correction only once, and it will be applied every time the function is called.

I highly suggest the Software-Carpentry Python episode on functions for more details.1 An empty function looks like this:

1. https://swcarpentry.github.io/python-novice-inflammation/08-func/index.xhtml

def empty_function():
  pass

The function begins with the def keyword, then the function name (i.e., how the function will be called and used), a set of round brackets, and a colon. The body of the function is indented (one tab or four spaces). This indentation is extremely important. If you omit it, you will get an error. In this example, pass is used as a placeholder to do nothing.

Typically functions will have what’s called a “docstring”—a multiple-line comment that describes the function’s purpose, parameters, and output, and that sometimes contains testing code. When you look up help documentation about a function in Python, the information contained in the function docstring is usually what shows up. This allows the function’s documentation and code to travel together, which makes the documentation easier to maintain.

def empty_function():
  """This is an empty function with a docstring.
  These docstrings are used to help document the function.
  They can be created by using 3 single quotes or 3 double quotes.
  The PEP-8 style guide says to use double quotes.
  """
  pass # this function still does nothing

Functions need not have parameters to be called.

def print_value():
  """Just prints the value 3
  """
  print(3)

# call our print_value function
print_value()

3

Functions can take parameters as well. We can modify our print_value() function so that it prints whatever value we pass into the function.

def print_value(value):
  """Prints the value passed into the parameter 'value'
  """
  print(value)

print_value(3)

3

print_value("Hello!")

Hello!

Functions can take multiple values as well.

def person(fname, lname):
  """A function that takes 3 values, and prints them
  """
  print(fname)
  print(lname)

person('Daniel', 'Chen')

Daniel
Chen

The examples thus far have simply created functions that printed values. What makes functions powerful is their ability to take inputs and return an output, not just print values to the screen. To accomplish this, we can use the return statement.

def my_mean_2(x, y):
  """A function that returns the mean of 2 values
  """
  mean_value = (x + y) / 2
  return mean_value
 
m = my_mean_2(0, 10)
print(m)

5.0

O.1 Default Parameters

Functions can also have default values. In fact, many of the functions found in various libraries have default values. These defaults allow users to type less because users now have to specify just a minimal amount of information for the function, but also give users the flexibility to make changes to the function’s behavior if desired. Default values are also useful if you have your own functions and want to add more features without breaking your existing code.

def my_mean_3(x, y, z=20):
  """A function with a parameter z that has a default value
  """
  # you can also directly return values without having to create
  # an intermediate variable
  return (x + y + z) / 3

Here we need to specify only x and y.

print(my_mean_3(10, 15))

15.0

We can also specify z if we want to override its default value.

print(my_mean_3(0, 50, 100))

50.0

O.2 Arbitrary Parameters

Sometimes function documentation includes the terms *args and **kwargs. These stand for “arguments” and “keyword arguments”, respectively. They allow the function author to capture an arbitrary number of arguments into the function. They may also provide a means for the user to pass arguments into another function that is called within the current function.

O.2.1 *args

Let’s write a more generic mean() function that can take an arbitrary number of values.

def my_mean(*args):
  """Calculate the mean for an arbitrary number of values
  """
  # add up all the values
  sum = 0
  for i in args:
      sum += i
  return sum / len(args)

print(my_mean(0, 10))

5.0

print(my_mean(0, 50, 100))

50.0

print(my_mean(3, 10, 25, 2))

10.0

O.2.2 **kwargs

**kwargs is similar to *args, but instead of acting like an arbitrary list of values, they are used like a dictionary—that is, they specify arbitrary pairs of key–value stores.

def greetings(welcome_word, **kwargs):
  """Prints out a greeting to a person,
  where the person's fname and lname are provided by the kwargs
  """
  print(welcome_word)
  print(kwargs.get('fname'))
  print(kwargs.get('lname'))

greetings('Hello!', fname='Daniel', lname='Chen')

Hello!
Daniel
Chen
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Ranges and Generators

The Python range() function allows the user to create a sequence of values by providing a starting value, an ending value, and if needed, a step value. It is very similar to the slicing syntax in Appendix L. By default, if we give range() a single number, this function will create a sequence of values starting from 0.

# create a range of 5
r = range(5)

However, the range() function doesn’t just return a list of numbers. In Python 3, it actually returns a generator.

print(r)

range(0, 5)

print(type(r))

<class 'range'>

If we wanted an actual list of the range, we can convert the generator to a list.

lr = list(range(5))
print(lr)

[0, 1, 2, 3, 4]

Before you decide to convert a generator, you should think carefully about what you plan to use it for. If you plan to create a generator that will look over a set of data (Appendix M), then there is no need to convert the generator.

for i in lr:
  print(i)

0
1
2
3
4

Generators create the next value in the sequence on the fly. As a consequence, the entire contents of the generator do not need to be loaded into memory before using it. Since generators know only the current position and how to calculate the next item in the sequence, you cannot use generators a second time.

The following example comes from the built-in itertools library in Python. It creates a Cartesian product of values provided to the function.

import itertools
prod = itertools.product([1, 2, 3], ['a', 'b', 'c'])

for i in prod:
  print(i)

(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

If you need to reuse the Cartesian product again, then you would have to either re-create the generator object or convert the generator into something more static (e.g., a list).

# this will not work because we already used this generator
for i in prod:
  print(i)

# create a new generator
prod = itertools.product([1, 2, 3], ['a', 'b', 'c'])
for i in prod:
  print(i)

(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

If all you are doing is creating something to iterate over once, it will save you a lot of computer memory if you do not convert it into a list object, since Python will just create the object as it goes, instead of trying to store the entire thing at once.
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Multiple Assignment

Multiple assignment in Python is a form of syntactic sugar. It provides the programmer with the ability to express something succinctly while making this information easier to express and to be understood by others.

As an example, let’s use a list of values.

l = [1, 2, 3]

If we want to assign a variable to each element of this list, we can subset the list and assign the value.

a = l[0]
b = l[1]
c = l[2]

print(a)

1

print(b)

2

print(c)

3

With multiple assignment, if the statement to the right is some kind of container, we can directly assign its values to multiple variables on the left. So, the preceding code can be rewritten as follows:

a1, b1, c1 = l

print(a1)

1

print(b1)

2

print(c1)

3

Multiple assignment is often used when generating figures and axes while plotting data.

import matplotlib.pyplot as plt

f, ax = plt.subplots()

[image: Images]

This one-line command will create the figure and the axes. Other use cases can be seen in the following Stack Overflow question:

https://stackoverflow.com/questions/5182573/multiple-assignment-semantics
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Numpy ndarray

The numpy library1 gives Python the ability to work with matrices and arrays.

1. https://numpy.org/doc/stable/

import numpy as np

Pandas started off as an extension to numpy.ndarray that provided more features suitable for data analysis. Since then, Pandas has evolved to the point that it shouldn’t be thought of as a collection of numpy arrays, since the two libraries are different.

import pandas as pd
 
df = pd.read_csv('data/concat_1.csv')
print(df)

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

If you do need to get the numpy.ndarray values from a Series or DataFrame, you can use the values attribute.

a = df['A']
print(a)

0    a0
1    a1
2    a2
3    a3
Name: A, dtype: object

print(type(a))

<class 'pandas.core.series.Series'>

print(a.values)

['a0' 'a1' 'a2' 'a3']

print(type(a.values))

<class 'numpy.ndarray'>

This is particularly helpful when cleaning data in Pandas. You can then use your newly cleaned data in other Python libraries that do not fully support the Series and DataFrame objects. The Software-Carpentry Python Inflammation lesson2 uses numpy and can be another good reference to learn about the library and Python as a whole.

2. https://swcarpentry.github.io/python-novice-inflammation/
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Classes

Python is an object-oriented language, meaning that everything you create or use is a “class”. Classes allow the programmer to group relevant functions and methods together. In Pandas, Series and DataFrame are classes, and each has its own attributes (e.g., .shape) and methods (e.g., .apply()). While it’s not this book’s intention to give a lesson on object-oriented programming, I want to very quickly cover classes, with the hope that this information will help you navigate the official documentation and understand why things are the way they are.

What’s nice about classes is that the programmer can define any class for their intended purpose. The following class represents a person. There are a first name (fname), a last name (lname), and an age (age) associated with each person. When the person celebrates their birthday (celebrate_birthday), the age increases by 1.

class Person(object):
  def __init__(self, fname, lname, age):
    self.fname = fname
    self.lname = lname
    self.age = age

  def celebrate_birthday(self):
    self.age += 1
    return(self)

With the Person class created, we can use it in our code. Let’s create an instance of our Person.

ka = Person(fname='King', lname='Arthur', age=39)

This created a Person—King Arthur, age 39—and saved him to a variable named ka. We can then get some attributes from ka (note that attributes are not functions or methods, so they do not have round brackets).

print(ka.fname)

King

print(ka.lname)

Arthur

print(ka.age)

39

Finally, we can call the method on our class to increment the age.

ka.celebrate_birthday()
print(ka.age)

40

The Pandas Series and DataFrame objects are more complex versions of our Person class. The general concepts are the same, though. We can instantiate any new class to a variable, and access its attributes or call its methods.
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SettingwithCopyWarning

The SettingWithCopyWarning is just a warning, so your code will still run and produce a result. However, if you do see this warning, it is a “code smell” that maybe you need to re-write something in your code.

Let’s work with one of our small example datasets to recreate the warning.

import pandas as pd

dat = pd.read_csv("data/concat_1.csv")
print(dat)

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

T.1 Modifying a Subset of Data

It’s pretty common to subset your data for values you need, and then make changes to that subset.

subset = dat[["A", "C"]]
print(subset)

   A  C
0 a0 c0
1 a1 c1
2 a2 c2
3 a3 c3

# this will trigger the warning
subset["new"] = ["bunch", "of", "new", "values"]
print(subset)

   A  C    new
0 a0 c0  bunch
1 a1 c1     of
2 a2 c2    new
3 a3 c3 values

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/ipykernel_29772/
4023129152.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/
pandas-docs/stable/user_guide/indexing.xhtml#returning-a-view-versus-a-copy
  subset["new"] = ["bunch", "of", "new", "values"]

This goes into how Python passes things by reference, so Pandas does not know for certain if you are working on a subsetted copy of the original dataframe, or want to make changes to the original dataframe.

The way we fix this is to be explicit when we are working with a subset of the data we plan to modify.

subset = dat[["A", "C"]].copy() # explicity copy
print(subset)

   A  C
0 a0 c0
1 a1 c1
2 a2 c2
3 a3 c3

# no more warning!
subset["new"] = ["bunch", "of", "new", "values"]
print(subset)

   A  C    new
0 a0 c0  bunch
1 a1 c1     of
2 a2 c2    new
3 a3 c3 values

In longer analysis and data processing scripts, the SettingWithCopyWarning is not always “close” to where the subsetting happened, so you may need to trace your code back to where you made a copy to your dataset. There were a few points in the text book where we made .copy() calls. This was to avoid the SettingWithCopyWarning.

T.2 Replacing a Value

When you want to replace a particular value in a dataframe, make sure you do the entire replacement in a single .loc[] or .iloc[] call.

# reset our data
dat = pd.read_csv("data/concat_1.csv")
print(dat)

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

If you filter your rows and columns in separate steps, you will also run into the SettingWithCopyWarning.

# want to replace the c2 value
# filter the rows and separately select the column
dat.loc[dat["C"] == "c2"]["C"] = "new value"

print(dat)

   A  B  C  D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

/var/folders/2b/qckmp39n7qn1dh0tpcm8g89w0000gn/T/ipykernel_29772/
3306879196.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/
pandas-docs/stable/user_guide/indexing.xhtml#returning-a-view-versus-a-copy
  dat.loc[dat["C"] == "c2"]["C"] = "new value"

Instead, you want to do the entire replacement in a single step.

dat = pd.read_csv("data/concat_1.csv")
dat.loc[dat["C"] == "c2", ["C"] ] = "new value"
print(dat)

   A  B         C  D
0 a0 b0        c0 d0
1 a1 b1        c1 d1
2 a2 b2 new value d2
3 a3 b3        c3 d3

T.3 More Resources

For more detail, there is a great blog post by Benjamin Pryke for Dataquest that walks you through this warning: https://www.dataquest.io/blog/settingwithcopywarning/

Kevin Markham from Data School also has a great YouTube video on the topic titled How do I avoid a SettingWithCopyWarning in pandas: https://www.youtube.com/watch?v=4R4WsDJ-KVc
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Method Chaining

Objects in Python usually have methods that modify the existing object. This means that we can call methods sequentially without having to save out our results in intermediate results.

If we use the same Person class from Chapter S.

class Person(object):
    def __init__(self, fname, lname, age):
        self.fname = fname
        self.lname = lname
        self.age = age

    def celebrate_birthday(self):
        self.age += 1
        return(self)

We can method chain, our results if we wanted our person to have two consecutive birthdays.

ka = Person(fname='King', lname='Arthur', age=39)
print(ka.age)

39

# King Arthur has 2 birthdays in a row!
ka.celebrate_birthday().celebrate_birthday()

<__main__.Person at 0x1039903a0>

print(ka.age)

41

We can do something similar in Pandas in Section 4.3 where we tidied up our weather data.

import pandas as pd

weather = pd.read_csv('data/weather.csv')
print(weather.head())

       id year month element  d1   d2   d3  d4    d5  d6   ... \
0 MX17004 2010     1    tmax NaN  NaN  NaN NaN   NaN NaN   ...
1 MX17004 2010     1    tmin NaN  NaN  NaN NaN   NaN NaN   ...
2 MX17004 2010     2    tmax NaN 27.3 24.1 NaN   NaN NaN   ...
3 MX17004 2010     2    tmin NaN 14.4 14.4 NaN   NaN NaN   ...
4 MX17004 2010     3    tmax NaN  NaN  NaN NaN  32.1 NaN   ...

  d22  d23 d24 d25 d26 d27 d28 d29  d30 d31
0 NaN  NaN NaN NaN NaN NaN NaN NaN 27.8 NaN
1 NaN  NaN NaN NaN NaN NaN NaN NaN 14.5 NaN
2 NaN 29.9 NaN NaN NaN NaN NaN NaN  NaN NaN
3 NaN 10.7 NaN NaN NaN NaN NaN NaN  NaN NaN
4 NaN  NaN NaN NaN NaN NaN NaN NaN  NaN NaN

[5 rows x 35 columns]

We first needed to .melt() our date, then .pivot_table(), and finally .reset_index(). Instead of doing each of the steps in separate parts, we can work as if the results returned themself.

weather_tidy =(
    weather
    .melt(
        id_vars =["id", "year", "month", "element"],
        var_name ="day",
        value_name ="temp",
    )
    .pivot_table(
        index =["id", "year", "month", "day"],
        columns ="element",
        values ="temp",
    )
    .reset_index()
)

print(weather_tidy)

element      id year month day tmax tmin
0       MX17004 2010     1 d30 27.8 14.5
1       MX17004 2010     2 d11 29.7 13.4
2       MX17004 2010     2  d2 27.3 14.4
3       MX17004 2010     2 d23 29.9 10.7
4       MX17004 2010     2  d3 24.1 14.4
..          ...  ...   ... ...  ...  ...
28      MX17004 2010    11 d27 27.7 14.2
29      MX17004 2010    11 d26 28.1 12.1
30      MX17004 2010    11  d4 27.2 12.0
31      MX17004 2010    12  d1 29.9 13.8
32      MX17004 2010    12  d6 27.8 10.5

[33 rows x 6 columns]
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Timing Code

If you’re running Python in an IPython instance (e.g., Jupyter Notebook, Jupyter Lab, or IPython directly), you have access to “magic” commands that allow you to easily perform non-Python tasks.

Magic commands are called with % or %%. In a Jupyter Notebook the %timeit will time a line of code and %%timeit will time the entire cell of code.

Let’s time the different vectorization methods from Chapter 5.

import pandas as pd
import numpy as np
import numba

 
def avg_2(x, y):
  return (x + y) / 2

 
@np.vectorize
def v_avg_2_mod(x, y):
  """Calculate the average, unless x is 20
  Same as before, but we are using the vectorize decorator
  """
  if (x == 20):
    return(np.NaN)
  else:
    return (x + y) / 2

@numba.vectorize
def v_avg_2_numba(x, y):
  """Calculate the average, unless x is 20
  Using the numba decorator.
  """
  # we now have to add type information to our function
  if (int(x) == 20):
    return(np.NaN)
  else:
    return (x + y) / 2

df = pd.DataFrame({"a": [10, 20, 30], "b": [20, 30, 40]})
print(df)

   a  b
0 10 20
1 20 30
2 30 40

Timing the different methods.

%%timeit
avg_2(df['a'], df['b'])

67.1 µs ± 12.7 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

%%timeit
v_avg_2_mod(df['a'], df['b'])

16.6 µs ± 1.05 µs per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

%%timeit
v_avg_2_numba(df['a'].values, df['b'].values)

3.92 µs ± 632 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

The first method isn’t even as flexible as the custom functions we created. If you are working with mathematical calculations, you can get performance benefits from changing the library you are using. Otherwise, using vectorize() can also help you write more readable apply code.
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String Formatting

W.1 C-Style

An older way to perform string formatting in Python is with the % operator. This follows the C printf style formatting. The str.format() method (Appendix Section W.2) is preferred over the C-style formatting, and if you are using Python 3.6+ you should be using formatted string literals (f-strings) described in Section 11.4. Nonetheless, you may still find code examples that use this formatting style.

We won’t go too much into detail about this method, but here are some of the Section 11.4 examples recreated using the C printf style formatting.

For digits we can use the %d placeholder, here, the d represents an integer digit.

s = 'I only know %d digits of pi' % 7
print(s)

I only know 7 digits of pi

For strings, we can use the s placeholder. Note the string pattern uses round parentheses ( ), instead of curly braces { }. The variable passed is a Python dict, which uses { }.

print(
    "Some digits of %(cont)s: %(value).2f"
    % {"cont": "e", "value": 2.718}
)

Some digits of e: 2.72

W.2 String Formatting: .format() Method

The format string syntax1 was superseded with formatted string literals (i.e., f-strings) in Python 3.6.

1. https://docs.python.org/3/library/string.xhtml#formatstrings

To format character strings with .format(), you essentially write a string with special placeholder characters, { }, and use the .format() method on the string to insert values into the placeholder.

var = 'flesh wound'
s = "It's just a {}!"

print(s.format(var))

It's just a flesh wound!

print(s.format('scratch'))

It's just a scratch!

The placeholders can also refer to variables multiple times.

# using variables multiple times by index
s = """Black Knight: 'Tis but a {0}.
King Arthur: A {0}? Your arm's off!
"""
print(s.format('scratch'))

Black Knight: 'Tis but a scratch.
King Arthur: A scratch? Your arm's off!

You can also give the placeholders a variable.

s = 'Hayden Planetarium Coordinates: {lat}, {lon}'
print(s.format(lat ='40.7815° N', lon ='73.9733° W'))

Hayden Planetarium Coordinates: 40.7815° N, 73.9733° W

W.3 Formatting Numbers

Numbers can also be formatted.

print('Some digits of pi: {}'.format(3.14159265359))

Some digits of pi: 3.14159265359

You can even format numbers and use thousands-place comma separators.

print(
  "In 2005, Lu Chao of China recited {:,} digits of pi".format(67890)
)

In 2005, Lu Chao of China recited 67,890 digits of pi

Numbers can be used to perform a calculation and formatted to a certain number of decimal values. Here we can calculate a proportion and format it into a percentage.

# the 0 in {0:.4} and {0:.4%} refer to the 0 index in this format
# the .4 refers to how many decimal values, 4
# if we provide a %, it will format the decimal as a percentage
print(
  "I remember {0:.4} or {0:.4%} of what Lu Chao recited".format(
    7 / 67890
  )
)

I remember 0.0001031 or 0.0103% of what Lu Chao recited

Finally, you can use string formatting to pad a number with zeros, similar to how zfill works on strings. When working with data, this method may be useful when working with ID numbers that were read in as numbers but should be strings.

# the first 0 refers to the index in this format
# the second 0 refers to the character to fill
# the 5 in this case refers to how many characters in total
# the d signals a digit will be used
# Pad the number with 0s so the entire string has 5 characters
print("My ID number is {0:05d}".format(42))

My ID number is 00042
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Conditionals (if-elif-else)

Conditional statements allow your script or program to have “control flow”. We have the option of using the if, elif, and else statements.

Let’s combine these examples into a simplified version of a popular programming interview problem: Fizz Buzz.

If the number we want to check is a multiple of 2, we want to print "fizz". We can use the modulo operator in Python, %, to give us the remainder of a number after division. So, a number is a multiple of 2 if the modulo (i.e., remainder) is 0. If that statement is true it will run the code in that if block (denoted by the indentation).

my_num = 4

if my_num % 2 == 0:
  print("fizz")

fizz

If we put multiple if statements after one another it will run through each of them in order.

my_num = 4

if my_num % 2 == 0:
  print("fizz")
if my_num % 4 == 0:
  print("buzz")

fizz
buzz

my_num = 6

if my_num % 3 == 0:
  print("fizz")
if my_num % 4 == 0:
  print("buzz")

fizz

Sometimes we only want the code to run the first True statement. This is useful if we only care about one of the conditions, but also so we are not making unnecessary calculations. We can put subsequent conditions in an elif (for “else if”) block.

my_num = 4

if my_num % 2 == 0:
  print("fizz")
elif my_num % 4 == 0:
  print("buzz")

fizz

Finally, we can use the else block to capture all the results if nothing else before it is True.

my_num = 7

if my_num % 2 == 0:
  print("fizz")
elif my_num % 4 == 0:
  print("buzz")
else:
  print("Not multiple of 2 or 4.")

Not multiple of 2 or 4.
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New York ACS Logistic Regression Example

import pandas as pd

acs = pd.read_csv('data/acs_ny.csv')
print(acs.columns)

Index(['Acres', 'FamilyIncome', 'FamilyType', 'NumBedrooms', 'NumChildren',
       'NumPeople', 'NumRooms', 'NumUnits', 'NumVehicles', 'NumWorkers',
       'OwnRent', 'YearBuilt', 'HouseCosts', 'ElectricBill', 'FoodStamp',
       'HeatingFuel', 'Insurance', 'Language'],
     dtype='object')

print(acs.head())

 Acres FamilyIncome  FamilyType NumBedrooms NumChildren NumPeople \
0 1-10          150     Married           4           1         3
1 1-10          180 Female Head           3           2         4
2 1-10          280 Female Head           4           0         2
3 1-10          330 Female Head           2           1         2
4 1-10          330   Male Head           3           1         2

   Num        Num       Num         Num         Own       Year  \
  Rooms       Units      Vehicles   Workers     Rent      Built
0     9 Single detached        1         0 Mortgage   1950-1959
1     6 Single detached        2         0   Rented Before 1939
2     8 Single detached        3         1 Mortgage   2000-2004
3     4 Single detached        1         0   Rented   1950-1959
4     5 Single attached        1         0 Mortgage Before 1939

   House  Electric  Food   Heating Insurance       Language
   Costs  Bill     Stamp   Fuel
0   1800       90     No       Gas      2500        English
1    850       90     No       Oil         0        English
2   2600      260     No       Oil      6600 Other European
3   1800      140     No       Oil         0        English
4    860      150     No       Gas       660        Spanish

To model these data, we first need to create a binary response variable. Here we split the FamilyIncome variable into a binary variable.

acs["ge150k"] = pd.cut(
     acs["FamilyIncome"],
     [0, 150000, acs["FamilyIncome"].max()],
     labels =[0, 1],
)

acs["ge150k_i"] = acs["ge150k"].astype(int)
print(acs["ge150k_i"].value_counts())

0    18294
1     4451
Name: ge150k_i, dtype: int64


Note

The cutoff values we used to bin our FamilyIncome variable with the .cut() function is arbitrary.



In so doing, we created a binary (0/1) variable.

acs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22745 entries, 0 to 22744
Data columns (total 20 columns):
 #   Column         Non-Null Count  Dtype
---  ------         --------------  -----
 0   Acres          22745 non-null  object
 1   FamilyIncome   22745 non-null  int64
 2   FamilyType     22745 non-null  object
 3   NumBedrooms    22745 non-null  int64
 4   NumChildren    22745 non-null  int64
 5   NumPeople      22745 non-null  int64
 6   NumRooms       22745 non-null  int64
 7   NumUnits       22745 non-null  object
 8   NumVehicles    22745 non-null  int64
 9   NumWorkers     22745 non-null  int64
 10  OwnRent        22745 non-null  object
 11  YearBuilt      22745 non-null  object
 12  HouseCosts     22745 non-null  int64
 13  ElectricBill   22745 non-null  int64
 14  FoodStamp      22745 non-null  object
 15  HeatingFuel    22745 non-null  object
 16  Insurance      22745 non-null  int64
 17  Language       22745 non-null  object
 18  ge150k         22745 non-null  category
 19  ge150k_i       22745 non-null  int64
dtypes: category(1), int64(11), object(8)
memory usage: 3.3+ MB

Let’s subset our data with just the columns we’ll use for the example.

acs_sub = acs[
  [
    "ge150k_i",
    "HouseCosts",
    "NumWorkers",
    "OwnRent",
    "NumBedrooms",
    "FamilyType",
  ]
].copy()

print(acs_sub)

   ge150k_i  HouseCosts  NumWorkers  OwnRent  NumBedrooms  FamilyType
0         0        1800           0 Mortgage            4     Married
1         0         850           0   Rented            3 Female Head
2         0        2600           1 Mortgage            4 Female Head
3         0        1800           0   Rented            2 Female Head
4         0         860           0 Mortgage            3   Male Head
...     ...         ...         ...      ...          ...         ...
22740     1        1700           2 Mortgage            5     Married
22741     1        1300           2 Mortgage            4     Married
22742     1         410           3 Mortgage            4     Married
22743     1        1600           3 Mortgage            3     Married
22744     1        6500           2 Mortgage            4     Married

[22745 rows x 6 columns]

import statsmodels.formula.api as smf

# we break up the formula string to fit on the page
model = smf.logit(
    "ge150k_i ~ HouseCosts + NumWorkers + OwnRent + NumBedrooms
      + FamilyType",
    data =acs_sub,
)

results = model.fit()

Optimization terminated successfully.
         Current function value: 0.391651
         Iterations 7

print(results.summary())

                              Logit Regression Results
==============================================================================
Dep. Variable:              ge150k_i No. Observations:   22745
Model:                         Logit Df Residuals:       22737
Method:                          MLE Df Model:               7
Date:               Thu, 01 Sep 2022 Pseudo R-squ.:     0.2078
Time:                       01:57:02 Log-Likelihood:   -8908.1
converged:                      True LL-Null:          -11244.
Covariance Type:           nonrobust LLR p-value:        0.000
===========================================================================================
                             coef   std err       z   P>|z|  [0.025  0.975]
-------------------------------------------------------------------------------------------
Intercept                 -5.8081     0.120 -48.456   0.000  -6.043  -5.573
OwnRent[T.Outright]        1.8276     0.208   8.782   0.000   1.420   2.236
OwnRent[T.Rented]         -0.8763     0.101  -8.647   0.000  -1.075  -0.678
FamilyType[T.Male Head]    0.2874     0.150   1.913   0.056  -0.007   0.582
FamilyType[T.Married]      1.3877     0.088  15.781   0.000   1.215   1.560
HouseCosts                 0.0007  1.72e-05  42.453   0.000   0.001   0.001
NumWorkers                 0.5873     0.026  22.393   0.000   0.536   0.639
NumBedrooms                0.2365     0.017  13.985   0.000   0.203   0.270
===========================================================================================

import statsmodels.formula.api as smf

# we break up the formula string to fit on the page
model = smf.logit(
    "ge150k_i ~ HouseCosts + NumWorkers + OwnRent + NumBedrooms + FamilyType",
    data =acs_sub,
)

results = model.fit()

Optimization terminated successfully.
         Current function value: 0.391651
         Iterations 7

print(results.summary())

                              Logit Regression Results
==============================================================================
Dep. Variable:              ge150k_i No. Observations:   22745
Model:                         Logit Df Residuals:       22737
Method:                          MLE Df Model:               7
Date:               Thu, 01 Sep 2022 Pseudo R-squ.:     0.2078
Time:                       01:57:02 Log-Likelihood:   -8908.1
converged:                      True LL-Null:          -11244.
Covariance Type:           nonrobust LLR p-value:        0.000
===========================================================================================
                             coef   std err       z   P>|z|  [0.025  0.975]
-------------------------------------------------------------------------------------------
Intercept                 -5.8081     0.120 -48.456   0.000  -6.043  -5.573
OwnRent[T.Outright]        1.8276     0.208   8.782   0.000   1.420   2.236
OwnRent[T.Rented]         -0.8763     0.101  -8.647   0.000  -1.075  -0.678
FamilyType[T.Male Head]    0.2874     0.150   1.913   0.056  -0.007   0.582
FamilyType[T.Married]      1.3877     0.088  15.781   0.000   1.215   1.560
HouseCosts                 0.0007  1.72e-05  42.453   0.000   0.001   0.001
NumWorkers                 0.5873     0.026  22.393   0.000   0.536   0.639
NumBedrooms                0.2365     0.017  13.985   0.000   0.203   0.270
===========================================================================================

import numpy as np

# exponentiate our results
odds_ratios = np.exp(results.params)
print(odds_ratios)

Intercept                0.003003
OwnRent[T.Outright]      6.219147
OwnRent[T.Rented]        0.416310
FamilyType[T.Male Head]  1.332901
FamilyType[T.Married]    4.005636
HouseCosts               1.000731
NumWorkers               1.799117
NumBedrooms              1.266852
dtype: float64

print(acs.OwnRent.unique())

['Mortgage' 'Rented' 'Outright']

Y.0.1 With Sklearn

predictors = pd.get_dummies(acs_sub.iloc[:, 1:], drop_first=True)
print(predictors)

    HouseCosts NumWorkers NumBedrooms OwnRent_Outright OwnRent_Rented \
0         1800          0           4                0              0
1          850          0           3                0              1
2         2600          1           4                0              0
3         1800          0           2                0              1
4          860          0           3                0              0
...        ...        ...         ...              ...            ...
22740     1700          2           5                0              0
22741     1300          2           4                0              0
22742      410          3           4                0              0
22743     1600          3           3                0              0
22744     6500          2           4                0              0

   FamilyType_Male Head FamilyType_Married
0                     0                  1
1                     0                  0
2                     0                  0
3                     0                  0
4                     1                  0
...                 ...                ...
22740                 0                  1
22741                 0                  1
22742                 0                  1
22743                 0                  1
22744                 0                  1

[22745 rows x 7 columns]

from sklearn import linear_model
lr = linear_model.LogisticRegression()

results = lr.fit(X = predictors, y = acs['ge150k_i'])

/Users/danielchen/.pyenv/versions/3.10.4/envs/pfe_book/lib/python3.10/
site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.xhtml
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.xhtml#logistic-
    regression
  n_iter_i = _check_optimize_result(

We can also get our coefficients in the same way.

print(results.coef_)

[[ 5.83764740e-04 7.29381775e-01 2.82543789e-01 7.03519146e-02
  -2.11748592e+00 -1.02984936e+00 2.50310160e-01]]

We can get the intercept as well.

print(results.intercept_)

[-4.82088401]

We can print out our results in a more attractive format.

values = np.append(results.intercept_, results.coef_)

# get the names of the values
names = np.append("intercept", predictors.columns)

# put everything in a labeled dataframe
results = pd.DataFrame(
    values,
    index =names,
    columns =["coef"], # you need the square brackets here
)

print(results)

                          coef
intercept            -4.820884
HouseCosts            0.000584
NumWorkers            0.729382
NumBedrooms           0.282544
OwnRent_Outright      0.070352
OwnRent_Rented       -2.117486
FamilyType_Male Head -1.029849
FamilyType_Married    0.250310

In order to interpret our coefficients, we still need to exponentiate our values.

results['or'] = np.exp(results['coef'])
print(results)

                            coef       or
intercept              -4.820884 0.008060
HouseCosts              0.000584 1.000584
NumWorkers              0.729382 2.073798
NumBedrooms             0.282544 1.326500
OwnRent_Outright        0.070352 1.072886
OwnRent_Rented         -2.117486 0.120334
FamilyType_Male Head   -1.029849 0.357061
FamilyType_Married      0.250310 1.284424
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Replicating Results in R

Preparing the data used for this Chapter.

library(MASS)

library(tidyverse)
library(tidymodels)

library(pscl)

# load the tips data
tips <- read r::read_csv("data/tips.csv")

# load the titanic data
titanic <- read r::read_csv("data/titanic.csv")

# subset the columns and drop missing values
titanic_sub <- titanic %>%
  dplyr ::select(survived, sex, age, embarked) %>%
  tidyr ::drop_na()

# load the ACS data and fix the data types
acs <- read r::read_csv("data/acs_ny.csv") %>%
  dplyr ::mutate( # data gets loaded differently from pandas
    NumChildren = as.integer(NumChildren),
    FamilyIncome = as.numeric(FamilyIncome),
    NumBedrooms = as.numeric(NumBedrooms),
    HouseCosts = as.numeric(HouseCosts),
    ElectricBill = as.numeric(ElectricBill),
    NumVehicles = as.numeric(NumVehicles)
  )

Z.1 Linear Regression

r_lm <-lm(tip ~ total_bill, data = tips)
print(summary(r_lm))

Call:
lm(formula = tip ~ total_bill, data = tips)

Residuals:
    Min      1Q  Median     3Q    Max
-3.1982 -0.5652 -0.0974 0.4863 3.7434

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.920270   0.159735   5.761 2.53e-08 ***
total_bill   0.105025   0.007365  14.260  < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.022 on 242 degrees of freedom
Multiple R-squared: 0.4566, Adjusted R-squared: 0.4544
F-statistic: 203.4 on 1 and 242 DF, p-value: < 2.2e-16

r_lm %>%
broom ::tidy()

# A tibble: 2 x 5
  term        estimate std.error statistic  p.value
  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)    0.920   0.160        5.76 2.53e- 8
2 total_bill     0.105   0.00736     14.3  6.69e-34

r_lm2 <- lm(tip ~ total_bill + size, data = tips)
print(summary(r_lm2))

Call:
lm(formula = tip ~ total_bill + size, data = tips)

Residuals:
    Min      1Q  Median     3Q    Max
-2.9279 -0.5547 -0.0852 0.5095 4.0425

Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)    0.668945   0.193609   3.455 0.00065 ***
total_bill     0.092713   0.009115  10.172 < 2e-16 ***
size           0.192598   0.085315   2.258 0.02487 *
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.014 on 241 degrees of freedom
Multiple R-squared:  0.4679,    Adjusted R-squared:  0.4635
F-statistic: 105.9 on 2 and 241 DF, p-value:  < 2.2e-16

r_lm2 %>%
broom ::tidy()

# A tibble: 3 x 5
  term        estimate std.error statistic  p.value
  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)   0.669    0.194        3.46 6.50e- 4
2 total_bill    0.0927   0.00911     10.2  1.88e-20
3 size          0.193    0.0853       2.26 2.49e- 2

r_lm3 <- lm(
  tip ~ total_bill + size + sex + smoker + day + time, data = tips
)
print(summary(r_lm3))

Call:
lm(formula = tip ~ total_bill + size + sex + smoker + day + time,
    data = tips)

Residuals:
    Min     1Q   Median     3Q    Max
-2.8475 -0.5729 -0.1026 0.4756 4.1076

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.803817   0.352702   2.279   0.0236 *
total_bill  0.094487   0.009601   9.841   <2e-16 ***
size        0.175992   0.089528   1.966   0.0505 .
sexMale    -0.032441   0.141612  -0.229   0.8190
smokerYes  -0.086408   0.146587  -0.589   0.5561
daySat     -0.121458   0.309742  -0.392   0.6953
daySun     -0.025481   0.321298  -0.079   0.9369
dayThur    -0.162259   0.393405  -0.412   0.6804
timeLunch   0.068129   0.444617   0.153   0.8783
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.024 on 235 degrees of freedom
Multiple R-squared:   0.4701,   Adjusted R-squared:  0.452
F-statistic: 26.06 on 8 and 235 DF, p-value: < 2.2e-16

r_lm3 %>%
broom ::tidy()

# A tibble: 9 x 5
  term        estimate std.error statistic p.value
  <chr>         <dbl>      <dbl>     <dbl>   <dbl>
1 (Intercept)  0.804    0.353      2.28   2.36e- 2
2 total_bill   0.0945   0.00960    9.84   2.34e-19
3 size         0.176    0.0895     1.97   5.05e- 2
4 sexMale     -0.0324   0.142     -0.229  8.19e- 1
5 smokerYes   -0.0864   0.147     -0.589  5.56e- 1
6 daySat      -0.121    0.310     -0.392  6.95e- 1
7 daySun      -0.0255   0.321     -0.0793 9.37e- 1
8 dayThur     -0.162    0.393     -0.412  6.80e- 1
9 timeLunch    0.0681   0.445      0.153  8.78e- 1

Z.2 Logistic Regression

# fit a logistic regression model
r_logistic_glm <- glm(
  survived ~ sex + age + embarked,
  family = binomial (link = "logit"),
  data = titanic_sub
)

summary(r_logistic_glm)

Call:
glm(formula = survived ~ sex + age + embarked, family =
binomial(link = "logit"),      data = titanic_sub)

Deviance Residuals:
    Min      1Q  Median     3Q    Max
-2.1185 -0.6498 -0.5972 0.7937 2.1977

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.204585   0.321796   6.851 7.34e-12 ***
sexmale    -2.475962   0.190807 -12.976  < 2e-16 ***
age        -0.008079   0.006550  -1.233  0.21746
embarkedQ  -1.815592   0.535031  -3.393  0.00069 ***
embarkedS  -1.006949   0.236857  -4.251 2.13e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 960.90 on 711 degrees of freedom
Residual deviance: 726.08 on 707 degrees of freedom
AIC: 736.08

Number of Fisher Scoring iterations: 4

# get the coefficient table and calculate the odds
res_r_glm <- r_logistic_glm %>%
  broom ::tidy() %>%
  dplyr ::mutate(odds = exp(estimate) %>% round(6))

res_r_glm

# A tibble: 5 x 6
  term        estimate std.error statistic p.value     odds
  <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>
1 (Intercept)   2.20     0.322        6.85 7.34e-12  9.07
2 sexmale      -2.48     0.191      -13.0  1.67e-38  0.0841
3 age          -0.00808  0.00655     -1.23 2.17e- 1  0.992
4 embarkedQ    -1.82     0.535       -3.39 6.90e- 4  0.163
5 embarkedS    -1.01     0.237       -4.25 2.13e- 5  0.365

Z.3 Poisson Regression

poi <- glm(
  NumBedrooms ~ HouseCosts + OwnRent,
  family=poisson(link = "log"),
  data=acs
)

summary(poi)

Call:
glm(formula = NumBedrooms ~ HouseCosts + OwnRent, family =
   poisson(link = "log"), data = acs)

Deviance Residuals:
    Min      1Q  Median     3Q    Max
-2.8300 -0.2815 -0.1293 0.2890 2.8142

Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)       1.139e+00  6.158e-03 184.928  < 2e-16 ***
HouseCosts        6.217e-05  2.958e-06 21.017   < 2e-16 ***
OwnRentOutright  -2.659e-01  5.131e-02 -5.182  2.19e-07 ***
OwnRentRented    -1.237e-01  1.237e-02 -9.996   < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 7479.9 on 22744 degrees of freedom
Residual deviance: 6839.2 on 22741 degrees of freedom
AIC: 76477

Number of Fisher Scoring iterations: 4

poi %>%
broom ::tidy()

# A tibble: 4 x 5
  term              estimate  std.error statistic  p.value
  <chr>                <dbl>      <dbl>     <dbl>    <dbl>
1 (Intercept)      1.14      0.00616       185.   0
2 HouseCosts       0.0000622 0.00000296     21.0  4.60e-98
3 OwnRentOutright -0.266     0.0513         -5.18 2.19e- 7
4 OwnRentRented   -0.124     0.0124        -10.0  1.58e-23

Z.3.1 Negative Binomial Regression for Overdispersion

od <- MAS S::glm.nb(
  NumPeople ~ Acres + NumVehicles,
  data=acs,
  link=log
)

Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace
= control$trace > : iteration limit reached

Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace
= control$trace > : iteration limit reached

summary(od)

Call:
MASS::glm.nb(formula = NumPeople ~ Acres + NumVehicles, data = acs,
    link = log, init.theta = 99662.32096)

Deviance Residuals:
    Min      1Q  Median     3Q    Max
-1.3263 -0.7064 -0.1315 0.3153 5.3101

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)  1.033460   0.012036  85.865  < 2e-16 ***
Acres10+    -0.025287   0.019301  -1.310     0.19
AcresSub 1   0.050768   0.009143   5.553 2.81e-08 ***
NumVehicles  0.070067   0.003683  19.023  < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(99662.32) family taken to be 1)

    Null deviance: 12127 on 22744 degrees of freedom
Residual deviance: 11754 on 22741 degrees of freedom
AIC: 80879

Number of Fisher Scoring iterations: 1

               Theta: 99662
           Std. Err.: 93669
Warning while fitting theta: iteration limit reached

2 x log-likelihood: -80869.33

od %>%
  broom ::tidy()

# A tibble: 4 x 5
  term       estimate std.error statistic  p.value
  <chr>         <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)  1.03     0.0120      85.9  0
2 Acres10+    -0.0253   0.0193      -1.31 1.90e- 1
3 AcresSub 1   0.0508   0.00914      5.55 2.81e- 8
4 NumVehicles  0.0701   0.00368     19.0  1.10e-80

pm <-glm(
  NumChildren ~ FamilyIncome + FamilyType + OwnRent,
  family = poisson(link="log"),
  data = acs
)

pchisq(
  2 * (logLik(od) - logLik(pm)),
  df = 1,
  lower.tail = FALSE
)

'log Lik.' 1 (df=5)
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